| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gcdmultipled.1 |  |-  ( ph -> M e. NN0 ) | 
						
							| 2 |  | gcdmultipled.2 |  |-  ( ph -> N e. ZZ ) | 
						
							| 3 | 1 | nn0zd |  |-  ( ph -> M e. ZZ ) | 
						
							| 4 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 5 |  | gcdaddm |  |-  ( ( N e. ZZ /\ M e. ZZ /\ 0 e. ZZ ) -> ( M gcd 0 ) = ( M gcd ( 0 + ( N x. M ) ) ) ) | 
						
							| 6 | 2 3 4 5 | syl3anc |  |-  ( ph -> ( M gcd 0 ) = ( M gcd ( 0 + ( N x. M ) ) ) ) | 
						
							| 7 |  | nn0gcdid0 |  |-  ( M e. NN0 -> ( M gcd 0 ) = M ) | 
						
							| 8 | 1 7 | syl |  |-  ( ph -> ( M gcd 0 ) = M ) | 
						
							| 9 | 2 3 | zmulcld |  |-  ( ph -> ( N x. M ) e. ZZ ) | 
						
							| 10 | 9 | zcnd |  |-  ( ph -> ( N x. M ) e. CC ) | 
						
							| 11 | 10 | addlidd |  |-  ( ph -> ( 0 + ( N x. M ) ) = ( N x. M ) ) | 
						
							| 12 | 11 | oveq2d |  |-  ( ph -> ( M gcd ( 0 + ( N x. M ) ) ) = ( M gcd ( N x. M ) ) ) | 
						
							| 13 | 6 8 12 | 3eqtr3rd |  |-  ( ph -> ( M gcd ( N x. M ) ) = M ) |