Step |
Hyp |
Ref |
Expression |
1 |
|
gcdmultipled.1 |
|- ( ph -> M e. NN0 ) |
2 |
|
gcdmultipled.2 |
|- ( ph -> N e. ZZ ) |
3 |
1
|
nn0zd |
|- ( ph -> M e. ZZ ) |
4 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
5 |
|
gcdaddm |
|- ( ( N e. ZZ /\ M e. ZZ /\ 0 e. ZZ ) -> ( M gcd 0 ) = ( M gcd ( 0 + ( N x. M ) ) ) ) |
6 |
2 3 4 5
|
syl3anc |
|- ( ph -> ( M gcd 0 ) = ( M gcd ( 0 + ( N x. M ) ) ) ) |
7 |
|
nn0gcdid0 |
|- ( M e. NN0 -> ( M gcd 0 ) = M ) |
8 |
1 7
|
syl |
|- ( ph -> ( M gcd 0 ) = M ) |
9 |
2 3
|
zmulcld |
|- ( ph -> ( N x. M ) e. ZZ ) |
10 |
9
|
zcnd |
|- ( ph -> ( N x. M ) e. CC ) |
11 |
10
|
addid2d |
|- ( ph -> ( 0 + ( N x. M ) ) = ( N x. M ) ) |
12 |
11
|
oveq2d |
|- ( ph -> ( M gcd ( 0 + ( N x. M ) ) ) = ( M gcd ( N x. M ) ) ) |
13 |
6 8 12
|
3eqtr3rd |
|- ( ph -> ( M gcd ( N x. M ) ) = M ) |