Step |
Hyp |
Ref |
Expression |
1 |
|
nncn |
|- ( M e. NN -> M e. CC ) |
2 |
1
|
adantr |
|- ( ( M e. NN /\ N e. ZZ ) -> M e. CC ) |
3 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
4 |
3
|
adantl |
|- ( ( M e. NN /\ N e. ZZ ) -> N e. CC ) |
5 |
2 4
|
mulcomd |
|- ( ( M e. NN /\ N e. ZZ ) -> ( M x. N ) = ( N x. M ) ) |
6 |
5
|
oveq2d |
|- ( ( M e. NN /\ N e. ZZ ) -> ( M gcd ( M x. N ) ) = ( M gcd ( N x. M ) ) ) |
7 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
8 |
7
|
adantr |
|- ( ( M e. NN /\ N e. ZZ ) -> M e. NN0 ) |
9 |
|
simpr |
|- ( ( M e. NN /\ N e. ZZ ) -> N e. ZZ ) |
10 |
8 9
|
gcdmultipled |
|- ( ( M e. NN /\ N e. ZZ ) -> ( M gcd ( N x. M ) ) = M ) |
11 |
6 10
|
eqtrd |
|- ( ( M e. NN /\ N e. ZZ ) -> ( M gcd ( M x. N ) ) = M ) |