Step |
Hyp |
Ref |
Expression |
1 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
2 |
|
0re |
|- 0 e. RR |
3 |
|
nn0re |
|- ( ( M gcd N ) e. NN0 -> ( M gcd N ) e. RR ) |
4 |
|
nn0ge0 |
|- ( ( M gcd N ) e. NN0 -> 0 <_ ( M gcd N ) ) |
5 |
|
leltne |
|- ( ( 0 e. RR /\ ( M gcd N ) e. RR /\ 0 <_ ( M gcd N ) ) -> ( 0 < ( M gcd N ) <-> ( M gcd N ) =/= 0 ) ) |
6 |
2 3 4 5
|
mp3an2i |
|- ( ( M gcd N ) e. NN0 -> ( 0 < ( M gcd N ) <-> ( M gcd N ) =/= 0 ) ) |
7 |
1 6
|
syl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 < ( M gcd N ) <-> ( M gcd N ) =/= 0 ) ) |
8 |
|
gcdeq0 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = 0 <-> ( M = 0 /\ N = 0 ) ) ) |
9 |
8
|
necon3abid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) =/= 0 <-> -. ( M = 0 /\ N = 0 ) ) ) |
10 |
7 9
|
bitr2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) <-> 0 < ( M gcd N ) ) ) |