Description: The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdn0val | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gcdval | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
|
| 2 | iffalse | |- ( -. ( M = 0 /\ N = 0 ) -> if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
|
| 3 | 1 2 | sylan9eq | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |