Step |
Hyp |
Ref |
Expression |
1 |
|
oveq12 |
|- ( ( M = 0 /\ N = 0 ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
2 |
1
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( 0 gcd 0 ) ) |
3 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
4 |
3
|
negeq0d |
|- ( N e. ZZ -> ( N = 0 <-> -u N = 0 ) ) |
5 |
4
|
anbi2d |
|- ( N e. ZZ -> ( ( M = 0 /\ N = 0 ) <-> ( M = 0 /\ -u N = 0 ) ) ) |
6 |
5
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M = 0 /\ N = 0 ) <-> ( M = 0 /\ -u N = 0 ) ) ) |
7 |
|
oveq12 |
|- ( ( M = 0 /\ -u N = 0 ) -> ( M gcd -u N ) = ( 0 gcd 0 ) ) |
8 |
6 7
|
syl6bi |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M = 0 /\ N = 0 ) -> ( M gcd -u N ) = ( 0 gcd 0 ) ) ) |
9 |
8
|
imp |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( M gcd -u N ) = ( 0 gcd 0 ) ) |
10 |
2 9
|
eqtr4d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd -u N ) ) |
11 |
|
gcddvds |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) |
12 |
|
gcdcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) |
13 |
12
|
nn0zd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) |
14 |
|
dvdsnegb |
|- ( ( ( M gcd N ) e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || N <-> ( M gcd N ) || -u N ) ) |
15 |
13 14
|
sylancom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || N <-> ( M gcd N ) || -u N ) ) |
16 |
15
|
anbi2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || N ) <-> ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) ) ) |
17 |
11 16
|
mpbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) ) |
18 |
6
|
notbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) <-> -. ( M = 0 /\ -u N = 0 ) ) ) |
19 |
|
simpl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
20 |
|
znegcl |
|- ( N e. ZZ -> -u N e. ZZ ) |
21 |
20
|
adantl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> -u N e. ZZ ) |
22 |
|
dvdslegcd |
|- ( ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 /\ -u N = 0 ) ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) |
23 |
22
|
ex |
|- ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ -u N e. ZZ ) -> ( -. ( M = 0 /\ -u N = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) ) |
24 |
13 19 21 23
|
syl3anc |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ -u N = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) ) |
25 |
18 24
|
sylbid |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) ) |
26 |
25
|
com12 |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd N ) || M /\ ( M gcd N ) || -u N ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) ) |
27 |
17 26
|
mpdi |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) <_ ( M gcd -u N ) ) ) |
28 |
27
|
impcom |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) <_ ( M gcd -u N ) ) |
29 |
|
gcddvds |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || -u N ) ) |
30 |
20 29
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || -u N ) ) |
31 |
|
gcdcl |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M gcd -u N ) e. NN0 ) |
32 |
31
|
nn0zd |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M gcd -u N ) e. ZZ ) |
33 |
20 32
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) e. ZZ ) |
34 |
|
dvdsnegb |
|- ( ( ( M gcd -u N ) e. ZZ /\ N e. ZZ ) -> ( ( M gcd -u N ) || N <-> ( M gcd -u N ) || -u N ) ) |
35 |
33 34
|
sylancom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd -u N ) || N <-> ( M gcd -u N ) || -u N ) ) |
36 |
35
|
anbi2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) <-> ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || -u N ) ) ) |
37 |
30 36
|
mpbird |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) ) |
38 |
|
simpr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
39 |
|
dvdslegcd |
|- ( ( ( ( M gcd -u N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) |
40 |
39
|
ex |
|- ( ( ( M gcd -u N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
41 |
33 19 38 40
|
syl3anc |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 /\ N = 0 ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
42 |
41
|
com12 |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( M gcd -u N ) || M /\ ( M gcd -u N ) || N ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
43 |
37 42
|
mpdi |
|- ( -. ( M = 0 /\ N = 0 ) -> ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) <_ ( M gcd N ) ) ) |
44 |
43
|
impcom |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd -u N ) <_ ( M gcd N ) ) |
45 |
13
|
zred |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. RR ) |
46 |
33
|
zred |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) e. RR ) |
47 |
45 46
|
letri3d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) = ( M gcd -u N ) <-> ( ( M gcd N ) <_ ( M gcd -u N ) /\ ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
48 |
47
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( ( M gcd N ) = ( M gcd -u N ) <-> ( ( M gcd N ) <_ ( M gcd -u N ) /\ ( M gcd -u N ) <_ ( M gcd N ) ) ) ) |
49 |
28 44 48
|
mpbir2and |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) = ( M gcd -u N ) ) |
50 |
10 49
|
pm2.61dan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd -u N ) ) |
51 |
50
|
eqcomd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd -u N ) = ( M gcd N ) ) |