| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( M e. NN /\ N e. NN ) -> M e. NN ) |
| 2 |
1
|
nnzd |
|- ( ( M e. NN /\ N e. NN ) -> M e. ZZ ) |
| 3 |
|
simpr |
|- ( ( M e. NN /\ N e. NN ) -> N e. NN ) |
| 4 |
3
|
nnzd |
|- ( ( M e. NN /\ N e. NN ) -> N e. ZZ ) |
| 5 |
3
|
nnne0d |
|- ( ( M e. NN /\ N e. NN ) -> N =/= 0 ) |
| 6 |
5
|
neneqd |
|- ( ( M e. NN /\ N e. NN ) -> -. N = 0 ) |
| 7 |
6
|
intnand |
|- ( ( M e. NN /\ N e. NN ) -> -. ( M = 0 /\ N = 0 ) ) |
| 8 |
|
gcdn0cl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN ) |
| 9 |
2 4 7 8
|
syl21anc |
|- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN ) |