| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq1 |
|- ( x = M -> ( x = 0 <-> M = 0 ) ) |
| 2 |
1
|
anbi1d |
|- ( x = M -> ( ( x = 0 /\ y = 0 ) <-> ( M = 0 /\ y = 0 ) ) ) |
| 3 |
|
breq2 |
|- ( x = M -> ( n || x <-> n || M ) ) |
| 4 |
3
|
anbi1d |
|- ( x = M -> ( ( n || x /\ n || y ) <-> ( n || M /\ n || y ) ) ) |
| 5 |
4
|
rabbidv |
|- ( x = M -> { n e. ZZ | ( n || x /\ n || y ) } = { n e. ZZ | ( n || M /\ n || y ) } ) |
| 6 |
5
|
supeq1d |
|- ( x = M -> sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) = sup ( { n e. ZZ | ( n || M /\ n || y ) } , RR , < ) ) |
| 7 |
2 6
|
ifbieq2d |
|- ( x = M -> if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) = if ( ( M = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || y ) } , RR , < ) ) ) |
| 8 |
|
eqeq1 |
|- ( y = N -> ( y = 0 <-> N = 0 ) ) |
| 9 |
8
|
anbi2d |
|- ( y = N -> ( ( M = 0 /\ y = 0 ) <-> ( M = 0 /\ N = 0 ) ) ) |
| 10 |
|
breq2 |
|- ( y = N -> ( n || y <-> n || N ) ) |
| 11 |
10
|
anbi2d |
|- ( y = N -> ( ( n || M /\ n || y ) <-> ( n || M /\ n || N ) ) ) |
| 12 |
11
|
rabbidv |
|- ( y = N -> { n e. ZZ | ( n || M /\ n || y ) } = { n e. ZZ | ( n || M /\ n || N ) } ) |
| 13 |
12
|
supeq1d |
|- ( y = N -> sup ( { n e. ZZ | ( n || M /\ n || y ) } , RR , < ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
| 14 |
9 13
|
ifbieq2d |
|- ( y = N -> if ( ( M = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || y ) } , RR , < ) ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
| 15 |
|
df-gcd |
|- gcd = ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) ) |
| 16 |
|
c0ex |
|- 0 e. _V |
| 17 |
|
ltso |
|- < Or RR |
| 18 |
17
|
supex |
|- sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) e. _V |
| 19 |
16 18
|
ifex |
|- if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) e. _V |
| 20 |
7 14 15 19
|
ovmpo |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |