Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
|- ( x = M -> ( x = 0 <-> M = 0 ) ) |
2 |
1
|
anbi1d |
|- ( x = M -> ( ( x = 0 /\ y = 0 ) <-> ( M = 0 /\ y = 0 ) ) ) |
3 |
|
breq2 |
|- ( x = M -> ( n || x <-> n || M ) ) |
4 |
3
|
anbi1d |
|- ( x = M -> ( ( n || x /\ n || y ) <-> ( n || M /\ n || y ) ) ) |
5 |
4
|
rabbidv |
|- ( x = M -> { n e. ZZ | ( n || x /\ n || y ) } = { n e. ZZ | ( n || M /\ n || y ) } ) |
6 |
5
|
supeq1d |
|- ( x = M -> sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) = sup ( { n e. ZZ | ( n || M /\ n || y ) } , RR , < ) ) |
7 |
2 6
|
ifbieq2d |
|- ( x = M -> if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) = if ( ( M = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || y ) } , RR , < ) ) ) |
8 |
|
eqeq1 |
|- ( y = N -> ( y = 0 <-> N = 0 ) ) |
9 |
8
|
anbi2d |
|- ( y = N -> ( ( M = 0 /\ y = 0 ) <-> ( M = 0 /\ N = 0 ) ) ) |
10 |
|
breq2 |
|- ( y = N -> ( n || y <-> n || N ) ) |
11 |
10
|
anbi2d |
|- ( y = N -> ( ( n || M /\ n || y ) <-> ( n || M /\ n || N ) ) ) |
12 |
11
|
rabbidv |
|- ( y = N -> { n e. ZZ | ( n || M /\ n || y ) } = { n e. ZZ | ( n || M /\ n || N ) } ) |
13 |
12
|
supeq1d |
|- ( y = N -> sup ( { n e. ZZ | ( n || M /\ n || y ) } , RR , < ) = sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) |
14 |
9 13
|
ifbieq2d |
|- ( y = N -> if ( ( M = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || y ) } , RR , < ) ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |
15 |
|
df-gcd |
|- gcd = ( x e. ZZ , y e. ZZ |-> if ( ( x = 0 /\ y = 0 ) , 0 , sup ( { n e. ZZ | ( n || x /\ n || y ) } , RR , < ) ) ) |
16 |
|
c0ex |
|- 0 e. _V |
17 |
|
ltso |
|- < Or RR |
18 |
17
|
supex |
|- sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) e. _V |
19 |
16 18
|
ifex |
|- if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) e. _V |
20 |
7 14 15 19
|
ovmpo |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = if ( ( M = 0 /\ N = 0 ) , 0 , sup ( { n e. ZZ | ( n || M /\ n || N ) } , RR , < ) ) ) |