Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( A e. NN -> A e. ZZ ) |
2 |
|
gcddvds |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
3 |
1 2
|
sylan |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A /\ ( A gcd B ) || B ) ) |
4 |
3
|
simprd |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || B ) |
5 |
|
breq1 |
|- ( ( A gcd B ) = A -> ( ( A gcd B ) || B <-> A || B ) ) |
6 |
4 5
|
syl5ibcom |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A -> A || B ) ) |
7 |
1
|
adantr |
|- ( ( A e. NN /\ B e. ZZ ) -> A e. ZZ ) |
8 |
|
iddvds |
|- ( A e. ZZ -> A || A ) |
9 |
7 8
|
syl |
|- ( ( A e. NN /\ B e. ZZ ) -> A || A ) |
10 |
|
simpr |
|- ( ( A e. NN /\ B e. ZZ ) -> B e. ZZ ) |
11 |
|
nnne0 |
|- ( A e. NN -> A =/= 0 ) |
12 |
|
simpl |
|- ( ( A = 0 /\ B = 0 ) -> A = 0 ) |
13 |
12
|
necon3ai |
|- ( A =/= 0 -> -. ( A = 0 /\ B = 0 ) ) |
14 |
11 13
|
syl |
|- ( A e. NN -> -. ( A = 0 /\ B = 0 ) ) |
15 |
14
|
adantr |
|- ( ( A e. NN /\ B e. ZZ ) -> -. ( A = 0 /\ B = 0 ) ) |
16 |
|
dvdslegcd |
|- ( ( ( A e. ZZ /\ A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( ( A || A /\ A || B ) -> A <_ ( A gcd B ) ) ) |
17 |
7 7 10 15 16
|
syl31anc |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A || A /\ A || B ) -> A <_ ( A gcd B ) ) ) |
18 |
9 17
|
mpand |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> A <_ ( A gcd B ) ) ) |
19 |
3
|
simpld |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) || A ) |
20 |
|
gcdcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
21 |
1 20
|
sylan |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. NN0 ) |
22 |
21
|
nn0zd |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. ZZ ) |
23 |
|
simpl |
|- ( ( A e. NN /\ B e. ZZ ) -> A e. NN ) |
24 |
|
dvdsle |
|- ( ( ( A gcd B ) e. ZZ /\ A e. NN ) -> ( ( A gcd B ) || A -> ( A gcd B ) <_ A ) ) |
25 |
22 23 24
|
syl2anc |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) || A -> ( A gcd B ) <_ A ) ) |
26 |
19 25
|
mpd |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) <_ A ) |
27 |
18 26
|
jctild |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> ( ( A gcd B ) <_ A /\ A <_ ( A gcd B ) ) ) ) |
28 |
21
|
nn0red |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A gcd B ) e. RR ) |
29 |
|
nnre |
|- ( A e. NN -> A e. RR ) |
30 |
29
|
adantr |
|- ( ( A e. NN /\ B e. ZZ ) -> A e. RR ) |
31 |
28 30
|
letri3d |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A <-> ( ( A gcd B ) <_ A /\ A <_ ( A gcd B ) ) ) ) |
32 |
27 31
|
sylibrd |
|- ( ( A e. NN /\ B e. ZZ ) -> ( A || B -> ( A gcd B ) = A ) ) |
33 |
6 32
|
impbid |
|- ( ( A e. NN /\ B e. ZZ ) -> ( ( A gcd B ) = A <-> A || B ) ) |