Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( GCH = _V /\ x e. On ) -> x e. On ) |
2 |
|
fvex |
|- ( aleph ` x ) e. _V |
3 |
|
simpl |
|- ( ( GCH = _V /\ x e. On ) -> GCH = _V ) |
4 |
2 3
|
eleqtrrid |
|- ( ( GCH = _V /\ x e. On ) -> ( aleph ` x ) e. GCH ) |
5 |
|
fvex |
|- ( aleph ` suc x ) e. _V |
6 |
5 3
|
eleqtrrid |
|- ( ( GCH = _V /\ x e. On ) -> ( aleph ` suc x ) e. GCH ) |
7 |
|
gchaleph2 |
|- ( ( x e. On /\ ( aleph ` x ) e. GCH /\ ( aleph ` suc x ) e. GCH ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
8 |
1 4 6 7
|
syl3anc |
|- ( ( GCH = _V /\ x e. On ) -> ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
9 |
8
|
ralrimiva |
|- ( GCH = _V -> A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |
10 |
|
alephgch |
|- ( ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> ( aleph ` x ) e. GCH ) |
11 |
10
|
ralimi |
|- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> A. x e. On ( aleph ` x ) e. GCH ) |
12 |
|
alephfnon |
|- aleph Fn On |
13 |
|
ffnfv |
|- ( aleph : On --> GCH <-> ( aleph Fn On /\ A. x e. On ( aleph ` x ) e. GCH ) ) |
14 |
12 13
|
mpbiran |
|- ( aleph : On --> GCH <-> A. x e. On ( aleph ` x ) e. GCH ) |
15 |
11 14
|
sylibr |
|- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> aleph : On --> GCH ) |
16 |
15
|
frnd |
|- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> ran aleph C_ GCH ) |
17 |
|
gch2 |
|- ( GCH = _V <-> ran aleph C_ GCH ) |
18 |
16 17
|
sylibr |
|- ( A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) -> GCH = _V ) |
19 |
9 18
|
impbii |
|- ( GCH = _V <-> A. x e. On ( aleph ` suc x ) ~~ ~P ( aleph ` x ) ) |