| Step |
Hyp |
Ref |
Expression |
| 1 |
|
vex |
|- x e. _V |
| 2 |
|
omex |
|- _om e. _V |
| 3 |
1 2
|
unex |
|- ( x u. _om ) e. _V |
| 4 |
|
ssun2 |
|- _om C_ ( x u. _om ) |
| 5 |
|
ssdomg |
|- ( ( x u. _om ) e. _V -> ( _om C_ ( x u. _om ) -> _om ~<_ ( x u. _om ) ) ) |
| 6 |
3 4 5
|
mp2 |
|- _om ~<_ ( x u. _om ) |
| 7 |
|
id |
|- ( GCH = _V -> GCH = _V ) |
| 8 |
3 7
|
eleqtrrid |
|- ( GCH = _V -> ( x u. _om ) e. GCH ) |
| 9 |
3
|
pwex |
|- ~P ( x u. _om ) e. _V |
| 10 |
9 7
|
eleqtrrid |
|- ( GCH = _V -> ~P ( x u. _om ) e. GCH ) |
| 11 |
|
gchacg |
|- ( ( _om ~<_ ( x u. _om ) /\ ( x u. _om ) e. GCH /\ ~P ( x u. _om ) e. GCH ) -> ~P ( x u. _om ) e. dom card ) |
| 12 |
6 8 10 11
|
mp3an2i |
|- ( GCH = _V -> ~P ( x u. _om ) e. dom card ) |
| 13 |
3
|
canth2 |
|- ( x u. _om ) ~< ~P ( x u. _om ) |
| 14 |
|
sdomdom |
|- ( ( x u. _om ) ~< ~P ( x u. _om ) -> ( x u. _om ) ~<_ ~P ( x u. _om ) ) |
| 15 |
13 14
|
ax-mp |
|- ( x u. _om ) ~<_ ~P ( x u. _om ) |
| 16 |
|
numdom |
|- ( ( ~P ( x u. _om ) e. dom card /\ ( x u. _om ) ~<_ ~P ( x u. _om ) ) -> ( x u. _om ) e. dom card ) |
| 17 |
12 15 16
|
sylancl |
|- ( GCH = _V -> ( x u. _om ) e. dom card ) |
| 18 |
|
ssun1 |
|- x C_ ( x u. _om ) |
| 19 |
|
ssnum |
|- ( ( ( x u. _om ) e. dom card /\ x C_ ( x u. _om ) ) -> x e. dom card ) |
| 20 |
17 18 19
|
sylancl |
|- ( GCH = _V -> x e. dom card ) |
| 21 |
1
|
a1i |
|- ( GCH = _V -> x e. _V ) |
| 22 |
20 21
|
2thd |
|- ( GCH = _V -> ( x e. dom card <-> x e. _V ) ) |
| 23 |
22
|
eqrdv |
|- ( GCH = _V -> dom card = _V ) |
| 24 |
|
dfac10 |
|- ( CHOICE <-> dom card = _V ) |
| 25 |
23 24
|
sylibr |
|- ( GCH = _V -> CHOICE ) |