Description: A "local" form of gchac . If A and ~P A are GCH-sets, then ~P A is well-orderable. The proof is due to Specker. Theorem 2.1 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gchacg | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A e. dom card ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | |- ( har ` A ) e. On |
|
| 2 | gchhar | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~~ ~P A ) |
|
| 3 | isnumi | |- ( ( ( har ` A ) e. On /\ ( har ` A ) ~~ ~P A ) -> ~P A e. dom card ) |
|
| 4 | 1 2 3 | sylancr | |- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A e. dom card ) |