Metamath Proof Explorer


Theorem gchacg

Description: A "local" form of gchac . If A and ~P A are GCH-sets, then ~P A is well-orderable. The proof is due to Specker. Theorem 2.1 of KanamoriPincus p. 419. (Contributed by Mario Carneiro, 15-May-2015)

Ref Expression
Assertion gchacg
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A e. dom card )

Proof

Step Hyp Ref Expression
1 harcl
 |-  ( har ` A ) e. On
2 gchhar
 |-  ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~~ ~P A )
3 isnumi
 |-  ( ( ( har ` A ) e. On /\ ( har ` A ) ~~ ~P A ) -> ~P A e. dom card )
4 1 2 3 sylancr
 |-  ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A e. dom card )