| Step | Hyp | Ref | Expression | 
						
							| 1 |  | alephsucpw2 |  |-  -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) | 
						
							| 2 |  | alephon |  |-  ( aleph ` suc A ) e. On | 
						
							| 3 |  | onenon |  |-  ( ( aleph ` suc A ) e. On -> ( aleph ` suc A ) e. dom card ) | 
						
							| 4 | 2 3 | ax-mp |  |-  ( aleph ` suc A ) e. dom card | 
						
							| 5 |  | simp3 |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ~P ( aleph ` A ) e. dom card ) | 
						
							| 6 |  | domtri2 |  |-  ( ( ( aleph ` suc A ) e. dom card /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) ) | 
						
							| 7 | 4 5 6 | sylancr |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) <-> -. ~P ( aleph ` A ) ~< ( aleph ` suc A ) ) ) | 
						
							| 8 | 1 7 | mpbiri |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) ) | 
						
							| 9 |  | fvex |  |-  ( aleph ` A ) e. _V | 
						
							| 10 |  | simp1 |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> A e. On ) | 
						
							| 11 |  | alephgeom |  |-  ( A e. On <-> _om C_ ( aleph ` A ) ) | 
						
							| 12 | 10 11 | sylib |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> _om C_ ( aleph ` A ) ) | 
						
							| 13 |  | ssdomg |  |-  ( ( aleph ` A ) e. _V -> ( _om C_ ( aleph ` A ) -> _om ~<_ ( aleph ` A ) ) ) | 
						
							| 14 | 9 12 13 | mpsyl |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> _om ~<_ ( aleph ` A ) ) | 
						
							| 15 |  | domnsym |  |-  ( _om ~<_ ( aleph ` A ) -> -. ( aleph ` A ) ~< _om ) | 
						
							| 16 | 14 15 | syl |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` A ) ~< _om ) | 
						
							| 17 |  | isfinite |  |-  ( ( aleph ` A ) e. Fin <-> ( aleph ` A ) ~< _om ) | 
						
							| 18 | 16 17 | sylnibr |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` A ) e. Fin ) | 
						
							| 19 |  | simp2 |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` A ) e. GCH ) | 
						
							| 20 |  | alephordilem1 |  |-  ( A e. On -> ( aleph ` A ) ~< ( aleph ` suc A ) ) | 
						
							| 21 | 20 | 3ad2ant1 |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` A ) ~< ( aleph ` suc A ) ) | 
						
							| 22 |  | gchi |  |-  ( ( ( aleph ` A ) e. GCH /\ ( aleph ` A ) ~< ( aleph ` suc A ) /\ ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) -> ( aleph ` A ) e. Fin ) | 
						
							| 23 | 22 | 3expia |  |-  ( ( ( aleph ` A ) e. GCH /\ ( aleph ` A ) ~< ( aleph ` suc A ) ) -> ( ( aleph ` suc A ) ~< ~P ( aleph ` A ) -> ( aleph ` A ) e. Fin ) ) | 
						
							| 24 | 19 21 23 | syl2anc |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ( aleph ` suc A ) ~< ~P ( aleph ` A ) -> ( aleph ` A ) e. Fin ) ) | 
						
							| 25 | 18 24 | mtod |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) | 
						
							| 26 |  | domtri2 |  |-  ( ( ~P ( aleph ` A ) e. dom card /\ ( aleph ` suc A ) e. dom card ) -> ( ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) <-> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) ) | 
						
							| 27 | 5 4 26 | sylancl |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) <-> -. ( aleph ` suc A ) ~< ~P ( aleph ` A ) ) ) | 
						
							| 28 | 25 27 | mpbird |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) ) | 
						
							| 29 |  | sbth |  |-  ( ( ( aleph ` suc A ) ~<_ ~P ( aleph ` A ) /\ ~P ( aleph ` A ) ~<_ ( aleph ` suc A ) ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) | 
						
							| 30 | 8 28 29 | syl2anc |  |-  ( ( A e. On /\ ( aleph ` A ) e. GCH /\ ~P ( aleph ` A ) e. dom card ) -> ( aleph ` suc A ) ~~ ~P ( aleph ` A ) ) |