| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1onn |  |-  1o e. _om | 
						
							| 2 | 1 | a1i |  |-  ( -. A e. Fin -> 1o e. _om ) | 
						
							| 3 |  | djudoml |  |-  ( ( A e. GCH /\ 1o e. _om ) -> A ~<_ ( A |_| 1o ) ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ( A |_| 1o ) ) | 
						
							| 5 |  | simpr |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> -. A e. Fin ) | 
						
							| 6 |  | nnfi |  |-  ( 1o e. _om -> 1o e. Fin ) | 
						
							| 7 | 1 6 | mp1i |  |-  ( -. A e. Fin -> 1o e. Fin ) | 
						
							| 8 |  | fidomtri2 |  |-  ( ( A e. GCH /\ 1o e. Fin ) -> ( A ~<_ 1o <-> -. 1o ~< A ) ) | 
						
							| 9 | 7 8 | sylan2 |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ 1o <-> -. 1o ~< A ) ) | 
						
							| 10 | 1 6 | mp1i |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> 1o e. Fin ) | 
						
							| 11 |  | domfi |  |-  ( ( 1o e. Fin /\ A ~<_ 1o ) -> A e. Fin ) | 
						
							| 12 | 11 | ex |  |-  ( 1o e. Fin -> ( A ~<_ 1o -> A e. Fin ) ) | 
						
							| 13 | 10 12 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ 1o -> A e. Fin ) ) | 
						
							| 14 | 9 13 | sylbird |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( -. 1o ~< A -> A e. Fin ) ) | 
						
							| 15 | 5 14 | mt3d |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> 1o ~< A ) | 
						
							| 16 |  | canthp1 |  |-  ( 1o ~< A -> ( A |_| 1o ) ~< ~P A ) | 
						
							| 17 | 15 16 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~< ~P A ) | 
						
							| 18 | 4 17 | jca |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ ( A |_| 1o ) /\ ( A |_| 1o ) ~< ~P A ) ) | 
						
							| 19 |  | gchen1 |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A |_| 1o ) /\ ( A |_| 1o ) ~< ~P A ) ) -> A ~~ ( A |_| 1o ) ) | 
						
							| 20 | 18 19 | mpdan |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A |_| 1o ) ) | 
						
							| 21 | 20 | ensymd |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) |