| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A e. GCH ) | 
						
							| 2 |  | djudoml |  |-  ( ( A e. GCH /\ A e. GCH ) -> A ~<_ ( A |_| A ) ) | 
						
							| 3 | 1 1 2 | syl2anc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ( A |_| A ) ) | 
						
							| 4 |  | canth2g |  |-  ( A e. GCH -> A ~< ~P A ) | 
						
							| 5 | 4 | adantr |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~< ~P A ) | 
						
							| 6 |  | sdomdom |  |-  ( A ~< ~P A -> A ~<_ ~P A ) | 
						
							| 7 | 5 6 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ~P A ) | 
						
							| 8 |  | reldom |  |-  Rel ~<_ | 
						
							| 9 | 8 | brrelex1i |  |-  ( A ~<_ ~P A -> A e. _V ) | 
						
							| 10 |  | djudom1 |  |-  ( ( A ~<_ ~P A /\ A e. _V ) -> ( A |_| A ) ~<_ ( ~P A |_| A ) ) | 
						
							| 11 | 9 10 | mpdan |  |-  ( A ~<_ ~P A -> ( A |_| A ) ~<_ ( ~P A |_| A ) ) | 
						
							| 12 | 9 | pwexd |  |-  ( A ~<_ ~P A -> ~P A e. _V ) | 
						
							| 13 |  | djudom2 |  |-  ( ( A ~<_ ~P A /\ ~P A e. _V ) -> ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) | 
						
							| 14 | 12 13 | mpdan |  |-  ( A ~<_ ~P A -> ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) | 
						
							| 15 |  | domtr |  |-  ( ( ( A |_| A ) ~<_ ( ~P A |_| A ) /\ ( ~P A |_| A ) ~<_ ( ~P A |_| ~P A ) ) -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) | 
						
							| 16 | 11 14 15 | syl2anc |  |-  ( A ~<_ ~P A -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) | 
						
							| 17 | 7 16 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~<_ ( ~P A |_| ~P A ) ) | 
						
							| 18 |  | pwdju1 |  |-  ( A e. GCH -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) | 
						
							| 19 | 18 | adantr |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) ) | 
						
							| 20 |  | gchdju1 |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) | 
						
							| 21 |  | pwen |  |-  ( ( A |_| 1o ) ~~ A -> ~P ( A |_| 1o ) ~~ ~P A ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ~P ( A |_| 1o ) ~~ ~P A ) | 
						
							| 23 |  | entr |  |-  ( ( ( ~P A |_| ~P A ) ~~ ~P ( A |_| 1o ) /\ ~P ( A |_| 1o ) ~~ ~P A ) -> ( ~P A |_| ~P A ) ~~ ~P A ) | 
						
							| 24 | 19 22 23 | syl2anc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P A ) | 
						
							| 25 |  | domentr |  |-  ( ( ( A |_| A ) ~<_ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( A |_| A ) ~<_ ~P A ) | 
						
							| 26 | 17 24 25 | syl2anc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~<_ ~P A ) | 
						
							| 27 |  | gchinf |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> _om ~<_ A ) | 
						
							| 28 |  | pwdjundom |  |-  ( _om ~<_ A -> -. ~P A ~<_ ( A |_| A ) ) | 
						
							| 29 | 27 28 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> -. ~P A ~<_ ( A |_| A ) ) | 
						
							| 30 |  | ensym |  |-  ( ( A |_| A ) ~~ ~P A -> ~P A ~~ ( A |_| A ) ) | 
						
							| 31 |  | endom |  |-  ( ~P A ~~ ( A |_| A ) -> ~P A ~<_ ( A |_| A ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( A |_| A ) ~~ ~P A -> ~P A ~<_ ( A |_| A ) ) | 
						
							| 33 | 29 32 | nsyl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> -. ( A |_| A ) ~~ ~P A ) | 
						
							| 34 |  | brsdom |  |-  ( ( A |_| A ) ~< ~P A <-> ( ( A |_| A ) ~<_ ~P A /\ -. ( A |_| A ) ~~ ~P A ) ) | 
						
							| 35 | 26 33 34 | sylanbrc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~< ~P A ) | 
						
							| 36 | 3 35 | jca |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ ( A |_| A ) /\ ( A |_| A ) ~< ~P A ) ) | 
						
							| 37 |  | gchen1 |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A |_| A ) /\ ( A |_| A ) ~< ~P A ) ) -> A ~~ ( A |_| A ) ) | 
						
							| 38 | 36 37 | mpdan |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A |_| A ) ) | 
						
							| 39 | 38 | ensymd |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) |