Step |
Hyp |
Ref |
Expression |
1 |
|
sdomdom |
|- ( A ~< B -> A ~<_ B ) |
2 |
1
|
con3i |
|- ( -. A ~<_ B -> -. A ~< B ) |
3 |
|
reldom |
|- Rel ~<_ |
4 |
3
|
brrelex1i |
|- ( B ~<_ ~P A -> B e. _V ) |
5 |
4
|
3ad2ant3 |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B e. _V ) |
6 |
|
fidomtri2 |
|- ( ( B e. _V /\ A e. Fin ) -> ( B ~<_ A <-> -. A ~< B ) ) |
7 |
5 6
|
sylan |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A e. Fin ) -> ( B ~<_ A <-> -. A ~< B ) ) |
8 |
2 7
|
syl5ibr |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A e. Fin ) -> ( -. A ~<_ B -> B ~<_ A ) ) |
9 |
8
|
orrd |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A e. Fin ) -> ( A ~<_ B \/ B ~<_ A ) ) |
10 |
|
simp1 |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> A e. GCH ) |
11 |
10
|
adantr |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> A e. GCH ) |
12 |
|
simpr |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> -. A e. Fin ) |
13 |
|
djudoml |
|- ( ( A e. GCH /\ B e. _V ) -> A ~<_ ( A |_| B ) ) |
14 |
10 5 13
|
syl2anc |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> A ~<_ ( A |_| B ) ) |
15 |
14
|
adantr |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> A ~<_ ( A |_| B ) ) |
16 |
|
djulepw |
|- ( ( ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |
17 |
16
|
3adant1 |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A |_| B ) ~<_ ~P A ) |
18 |
17
|
adantr |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> ( A |_| B ) ~<_ ~P A ) |
19 |
|
gchor |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A |_| B ) /\ ( A |_| B ) ~<_ ~P A ) ) -> ( A ~~ ( A |_| B ) \/ ( A |_| B ) ~~ ~P A ) ) |
20 |
11 12 15 18 19
|
syl22anc |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> ( A ~~ ( A |_| B ) \/ ( A |_| B ) ~~ ~P A ) ) |
21 |
|
djudoml |
|- ( ( B e. _V /\ A e. GCH ) -> B ~<_ ( B |_| A ) ) |
22 |
5 10 21
|
syl2anc |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B ~<_ ( B |_| A ) ) |
23 |
|
djucomen |
|- ( ( B e. _V /\ A e. GCH ) -> ( B |_| A ) ~~ ( A |_| B ) ) |
24 |
5 10 23
|
syl2anc |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( B |_| A ) ~~ ( A |_| B ) ) |
25 |
|
domentr |
|- ( ( B ~<_ ( B |_| A ) /\ ( B |_| A ) ~~ ( A |_| B ) ) -> B ~<_ ( A |_| B ) ) |
26 |
22 24 25
|
syl2anc |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> B ~<_ ( A |_| B ) ) |
27 |
|
domen2 |
|- ( A ~~ ( A |_| B ) -> ( B ~<_ A <-> B ~<_ ( A |_| B ) ) ) |
28 |
26 27
|
syl5ibrcom |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A ~~ ( A |_| B ) -> B ~<_ A ) ) |
29 |
28
|
imp |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A ~~ ( A |_| B ) ) -> B ~<_ A ) |
30 |
29
|
olcd |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ A ~~ ( A |_| B ) ) -> ( A ~<_ B \/ B ~<_ A ) ) |
31 |
|
simpl1 |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> A e. GCH ) |
32 |
|
canth2g |
|- ( A e. GCH -> A ~< ~P A ) |
33 |
|
sdomdom |
|- ( A ~< ~P A -> A ~<_ ~P A ) |
34 |
31 32 33
|
3syl |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> A ~<_ ~P A ) |
35 |
|
simpl2 |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ( A |_| A ) ~~ A ) |
36 |
|
pwen |
|- ( ( A |_| A ) ~~ A -> ~P ( A |_| A ) ~~ ~P A ) |
37 |
35 36
|
syl |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ~P ( A |_| A ) ~~ ~P A ) |
38 |
|
enen2 |
|- ( ( A |_| B ) ~~ ~P A -> ( ~P ( A |_| A ) ~~ ( A |_| B ) <-> ~P ( A |_| A ) ~~ ~P A ) ) |
39 |
38
|
adantl |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ( ~P ( A |_| A ) ~~ ( A |_| B ) <-> ~P ( A |_| A ) ~~ ~P A ) ) |
40 |
37 39
|
mpbird |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ~P ( A |_| A ) ~~ ( A |_| B ) ) |
41 |
|
endom |
|- ( ~P ( A |_| A ) ~~ ( A |_| B ) -> ~P ( A |_| A ) ~<_ ( A |_| B ) ) |
42 |
|
pwdjudom |
|- ( ~P ( A |_| A ) ~<_ ( A |_| B ) -> ~P A ~<_ B ) |
43 |
40 41 42
|
3syl |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ~P A ~<_ B ) |
44 |
|
domtr |
|- ( ( A ~<_ ~P A /\ ~P A ~<_ B ) -> A ~<_ B ) |
45 |
34 43 44
|
syl2anc |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> A ~<_ B ) |
46 |
45
|
orcd |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A |_| B ) ~~ ~P A ) -> ( A ~<_ B \/ B ~<_ A ) ) |
47 |
30 46
|
jaodan |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ ( A ~~ ( A |_| B ) \/ ( A |_| B ) ~~ ~P A ) ) -> ( A ~<_ B \/ B ~<_ A ) ) |
48 |
20 47
|
syldan |
|- ( ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) /\ -. A e. Fin ) -> ( A ~<_ B \/ B ~<_ A ) ) |
49 |
9 48
|
pm2.61dan |
|- ( ( A e. GCH /\ ( A |_| A ) ~~ A /\ B ~<_ ~P A ) -> ( A ~<_ B \/ B ~<_ A ) ) |