| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprl |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~<_ B ) | 
						
							| 2 |  | gchi |  |-  ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) | 
						
							| 3 | 2 | 3com23 |  |-  ( ( A e. GCH /\ B ~< ~P A /\ A ~< B ) -> A e. Fin ) | 
						
							| 4 | 3 | 3expia |  |-  ( ( A e. GCH /\ B ~< ~P A ) -> ( A ~< B -> A e. Fin ) ) | 
						
							| 5 | 4 | con3dimp |  |-  ( ( ( A e. GCH /\ B ~< ~P A ) /\ -. A e. Fin ) -> -. A ~< B ) | 
						
							| 6 | 5 | an32s |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ B ~< ~P A ) -> -. A ~< B ) | 
						
							| 7 | 6 | adantrl |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> -. A ~< B ) | 
						
							| 8 |  | bren2 |  |-  ( A ~~ B <-> ( A ~<_ B /\ -. A ~< B ) ) | 
						
							| 9 | 1 7 8 | sylanbrc |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~~ B ) |