Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~<_ B ) |
2 |
|
gchi |
|- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |
3 |
2
|
3com23 |
|- ( ( A e. GCH /\ B ~< ~P A /\ A ~< B ) -> A e. Fin ) |
4 |
3
|
3expia |
|- ( ( A e. GCH /\ B ~< ~P A ) -> ( A ~< B -> A e. Fin ) ) |
5 |
4
|
con3dimp |
|- ( ( ( A e. GCH /\ B ~< ~P A ) /\ -. A e. Fin ) -> -. A ~< B ) |
6 |
5
|
an32s |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ B ~< ~P A ) -> -. A ~< B ) |
7 |
6
|
adantrl |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> -. A ~< B ) |
8 |
|
bren2 |
|- ( A ~~ B <-> ( A ~<_ B /\ -. A ~< B ) ) |
9 |
1 7 8
|
sylanbrc |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~~ B ) |