| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprr |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> B ~<_ ~P A ) | 
						
							| 2 |  | gchi |  |-  ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) | 
						
							| 3 | 2 | 3expia |  |-  ( ( A e. GCH /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) | 
						
							| 4 | 3 | con3dimp |  |-  ( ( ( A e. GCH /\ A ~< B ) /\ -. A e. Fin ) -> -. B ~< ~P A ) | 
						
							| 5 | 4 | an32s |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ A ~< B ) -> -. B ~< ~P A ) | 
						
							| 6 | 5 | adantrr |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> -. B ~< ~P A ) | 
						
							| 7 |  | bren2 |  |-  ( B ~~ ~P A <-> ( B ~<_ ~P A /\ -. B ~< ~P A ) ) | 
						
							| 8 | 1 6 7 | sylanbrc |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> B ~~ ~P A ) |