Step |
Hyp |
Ref |
Expression |
1 |
|
simprr |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> B ~<_ ~P A ) |
2 |
|
gchi |
|- ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |
3 |
2
|
3expia |
|- ( ( A e. GCH /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) |
4 |
3
|
con3dimp |
|- ( ( ( A e. GCH /\ A ~< B ) /\ -. A e. Fin ) -> -. B ~< ~P A ) |
5 |
4
|
an32s |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ A ~< B ) -> -. B ~< ~P A ) |
6 |
5
|
adantrr |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> -. B ~< ~P A ) |
7 |
|
bren2 |
|- ( B ~~ ~P A <-> ( B ~<_ ~P A /\ -. B ~< ~P A ) ) |
8 |
1 6 7
|
sylanbrc |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< B /\ B ~<_ ~P A ) ) -> B ~~ ~P A ) |