Step |
Hyp |
Ref |
Expression |
1 |
|
harcl |
|- ( har ` A ) e. On |
2 |
|
simp3 |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A e. GCH ) |
3 |
|
djudoml |
|- ( ( ( har ` A ) e. On /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) ) |
4 |
1 2 3
|
sylancr |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) ) |
5 |
|
domnsym |
|- ( _om ~<_ A -> -. A ~< _om ) |
6 |
5
|
3ad2ant1 |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A ~< _om ) |
7 |
|
isfinite |
|- ( A e. Fin <-> A ~< _om ) |
8 |
6 7
|
sylnibr |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A e. Fin ) |
9 |
|
pwfi |
|- ( A e. Fin <-> ~P A e. Fin ) |
10 |
8 9
|
sylnib |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. ~P A e. Fin ) |
11 |
|
djudoml |
|- ( ( ~P A e. GCH /\ ( har ` A ) e. On ) -> ~P A ~<_ ( ~P A |_| ( har ` A ) ) ) |
12 |
2 1 11
|
sylancl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~<_ ( ~P A |_| ( har ` A ) ) ) |
13 |
|
fvexd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) e. _V ) |
14 |
|
djuex |
|- ( ( ~P A e. GCH /\ ( har ` A ) e. _V ) -> ( ~P A |_| ( har ` A ) ) e. _V ) |
15 |
2 13 14
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) e. _V ) |
16 |
|
canth2g |
|- ( ( ~P A |_| ( har ` A ) ) e. _V -> ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) ) |
17 |
15 16
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) ) |
18 |
|
pwdjuen |
|- ( ( ~P A e. GCH /\ ( har ` A ) e. On ) -> ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) ) |
19 |
2 1 18
|
sylancl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) ) |
20 |
2
|
pwexd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ~P A e. _V ) |
21 |
|
simp2 |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A e. GCH ) |
22 |
|
harwdom |
|- ( A e. GCH -> ( har ` A ) ~<_* ~P ( A X. A ) ) |
23 |
|
wdompwdom |
|- ( ( har ` A ) ~<_* ~P ( A X. A ) -> ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) |
24 |
21 22 23
|
3syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) |
25 |
|
xpdom2g |
|- ( ( ~P ~P A e. _V /\ ~P ( har ` A ) ~<_ ~P ~P ( A X. A ) ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
26 |
20 24 25
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
27 |
21 21
|
xpexd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A X. A ) e. _V ) |
28 |
27
|
pwexd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A X. A ) e. _V ) |
29 |
|
pwdjuen |
|- ( ( ~P A e. GCH /\ ~P ( A X. A ) e. _V ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
30 |
2 28 29
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P ~P A X. ~P ~P ( A X. A ) ) ) |
31 |
30
|
ensymd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ( ~P A |_| ~P ( A X. A ) ) ) |
32 |
|
enrefg |
|- ( ~P A e. GCH -> ~P A ~~ ~P A ) |
33 |
2 32
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ~P A ) |
34 |
|
gchxpidm |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~~ A ) |
35 |
21 8 34
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A X. A ) ~~ A ) |
36 |
|
pwen |
|- ( ( A X. A ) ~~ A -> ~P ( A X. A ) ~~ ~P A ) |
37 |
35 36
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A X. A ) ~~ ~P A ) |
38 |
|
djuen |
|- ( ( ~P A ~~ ~P A /\ ~P ( A X. A ) ~~ ~P A ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) ) |
39 |
33 37 38
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) ) |
40 |
|
gchdjuidm |
|- ( ( ~P A e. GCH /\ -. ~P A e. Fin ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
41 |
2 10 40
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P A ) ~~ ~P A ) |
42 |
|
entr |
|- ( ( ( ~P A |_| ~P ( A X. A ) ) ~~ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A ) |
43 |
39 41 42
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A ) |
44 |
|
pwen |
|- ( ( ~P A |_| ~P ( A X. A ) ) ~~ ~P A -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) |
45 |
43 44
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) |
46 |
|
entr |
|- ( ( ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ( ~P A |_| ~P ( A X. A ) ) /\ ~P ( ~P A |_| ~P ( A X. A ) ) ~~ ~P ~P A ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) |
47 |
31 45 46
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) |
48 |
|
domentr |
|- ( ( ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ( ~P ~P A X. ~P ~P ( A X. A ) ) /\ ( ~P ~P A X. ~P ~P ( A X. A ) ) ~~ ~P ~P A ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) |
49 |
26 47 48
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) |
50 |
|
endomtr |
|- ( ( ~P ( ~P A |_| ( har ` A ) ) ~~ ( ~P ~P A X. ~P ( har ` A ) ) /\ ( ~P ~P A X. ~P ( har ` A ) ) ~<_ ~P ~P A ) -> ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) |
51 |
19 49 50
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) |
52 |
|
sdomdomtr |
|- ( ( ( ~P A |_| ( har ` A ) ) ~< ~P ( ~P A |_| ( har ` A ) ) /\ ~P ( ~P A |_| ( har ` A ) ) ~<_ ~P ~P A ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) |
53 |
17 51 52
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) |
54 |
|
gchen1 |
|- ( ( ( ~P A e. GCH /\ -. ~P A e. Fin ) /\ ( ~P A ~<_ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~< ~P ~P A ) ) -> ~P A ~~ ( ~P A |_| ( har ` A ) ) ) |
55 |
2 10 12 53 54
|
syl22anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( ~P A |_| ( har ` A ) ) ) |
56 |
|
djucomen |
|- ( ( ~P A e. GCH /\ ( har ` A ) e. _V ) -> ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) |
57 |
2 13 56
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) |
58 |
|
entr |
|- ( ( ~P A ~~ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~~ ( ( har ` A ) |_| ~P A ) ) -> ~P A ~~ ( ( har ` A ) |_| ~P A ) ) |
59 |
55 57 58
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( ( har ` A ) |_| ~P A ) ) |
60 |
59
|
ensymd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ( har ` A ) |_| ~P A ) ~~ ~P A ) |
61 |
|
domentr |
|- ( ( ( har ` A ) ~<_ ( ( har ` A ) |_| ~P A ) /\ ( ( har ` A ) |_| ~P A ) ~~ ~P A ) -> ( har ` A ) ~<_ ~P A ) |
62 |
4 60 61
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ~P A ) |
63 |
|
gchdjuidm |
|- ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) |
64 |
21 8 63
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| A ) ~~ A ) |
65 |
|
pwen |
|- ( ( A |_| A ) ~~ A -> ~P ( A |_| A ) ~~ ~P A ) |
66 |
64 65
|
syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A |_| A ) ~~ ~P A ) |
67 |
|
djudoml |
|- ( ( A e. GCH /\ ( har ` A ) e. On ) -> A ~<_ ( A |_| ( har ` A ) ) ) |
68 |
21 1 67
|
sylancl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~<_ ( A |_| ( har ` A ) ) ) |
69 |
|
harndom |
|- -. ( har ` A ) ~<_ A |
70 |
|
djudoml |
|- ( ( ( har ` A ) e. On /\ A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| A ) ) |
71 |
1 21 70
|
sylancr |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( ( har ` A ) |_| A ) ) |
72 |
|
djucomen |
|- ( ( ( har ` A ) e. On /\ A e. GCH ) -> ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
73 |
1 21 72
|
sylancr |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
74 |
|
domentr |
|- ( ( ( har ` A ) ~<_ ( ( har ` A ) |_| A ) /\ ( ( har ` A ) |_| A ) ~~ ( A |_| ( har ` A ) ) ) -> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) |
75 |
71 73 74
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) |
76 |
|
domen2 |
|- ( A ~~ ( A |_| ( har ` A ) ) -> ( ( har ` A ) ~<_ A <-> ( har ` A ) ~<_ ( A |_| ( har ` A ) ) ) ) |
77 |
75 76
|
syl5ibrcom |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A ~~ ( A |_| ( har ` A ) ) -> ( har ` A ) ~<_ A ) ) |
78 |
69 77
|
mtoi |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> -. A ~~ ( A |_| ( har ` A ) ) ) |
79 |
|
brsdom |
|- ( A ~< ( A |_| ( har ` A ) ) <-> ( A ~<_ ( A |_| ( har ` A ) ) /\ -. A ~~ ( A |_| ( har ` A ) ) ) ) |
80 |
68 78 79
|
sylanbrc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~< ( A |_| ( har ` A ) ) ) |
81 |
|
canth2g |
|- ( A e. GCH -> A ~< ~P A ) |
82 |
|
sdomdom |
|- ( A ~< ~P A -> A ~<_ ~P A ) |
83 |
21 81 82
|
3syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> A ~<_ ~P A ) |
84 |
|
djudom1 |
|- ( ( A ~<_ ~P A /\ ( har ` A ) e. On ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) ) |
85 |
83 1 84
|
sylancl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) ) |
86 |
|
djudom2 |
|- ( ( ( har ` A ) ~<_ ~P A /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
87 |
62 2 86
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
88 |
|
domtr |
|- ( ( ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ( har ` A ) ) /\ ( ~P A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
89 |
85 87 88
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) ) |
90 |
|
domentr |
|- ( ( ( A |_| ( har ` A ) ) ~<_ ( ~P A |_| ~P A ) /\ ( ~P A |_| ~P A ) ~~ ~P A ) -> ( A |_| ( har ` A ) ) ~<_ ~P A ) |
91 |
89 41 90
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~<_ ~P A ) |
92 |
|
gchen2 |
|- ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~< ( A |_| ( har ` A ) ) /\ ( A |_| ( har ` A ) ) ~<_ ~P A ) ) -> ( A |_| ( har ` A ) ) ~~ ~P A ) |
93 |
21 8 80 91 92
|
syl22anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( A |_| ( har ` A ) ) ~~ ~P A ) |
94 |
93
|
ensymd |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~~ ( A |_| ( har ` A ) ) ) |
95 |
|
entr |
|- ( ( ~P ( A |_| A ) ~~ ~P A /\ ~P A ~~ ( A |_| ( har ` A ) ) ) -> ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
96 |
66 94 95
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) ) |
97 |
|
endom |
|- ( ~P ( A |_| A ) ~~ ( A |_| ( har ` A ) ) -> ~P ( A |_| A ) ~<_ ( A |_| ( har ` A ) ) ) |
98 |
|
pwdjudom |
|- ( ~P ( A |_| A ) ~<_ ( A |_| ( har ` A ) ) -> ~P A ~<_ ( har ` A ) ) |
99 |
96 97 98
|
3syl |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ~P A ~<_ ( har ` A ) ) |
100 |
|
sbth |
|- ( ( ( har ` A ) ~<_ ~P A /\ ~P A ~<_ ( har ` A ) ) -> ( har ` A ) ~~ ~P A ) |
101 |
62 99 100
|
syl2anc |
|- ( ( _om ~<_ A /\ A e. GCH /\ ~P A e. GCH ) -> ( har ` A ) ~~ ~P A ) |