| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relsdom |  |-  Rel ~< | 
						
							| 2 | 1 | brrelex1i |  |-  ( B ~< ~P A -> B e. _V ) | 
						
							| 3 | 2 | adantl |  |-  ( ( A ~< B /\ B ~< ~P A ) -> B e. _V ) | 
						
							| 4 |  | breq2 |  |-  ( x = B -> ( A ~< x <-> A ~< B ) ) | 
						
							| 5 |  | breq1 |  |-  ( x = B -> ( x ~< ~P A <-> B ~< ~P A ) ) | 
						
							| 6 | 4 5 | anbi12d |  |-  ( x = B -> ( ( A ~< x /\ x ~< ~P A ) <-> ( A ~< B /\ B ~< ~P A ) ) ) | 
						
							| 7 | 6 | spcegv |  |-  ( B e. _V -> ( ( A ~< B /\ B ~< ~P A ) -> E. x ( A ~< x /\ x ~< ~P A ) ) ) | 
						
							| 8 | 3 7 | mpcom |  |-  ( ( A ~< B /\ B ~< ~P A ) -> E. x ( A ~< x /\ x ~< ~P A ) ) | 
						
							| 9 |  | df-ex |  |-  ( E. x ( A ~< x /\ x ~< ~P A ) <-> -. A. x -. ( A ~< x /\ x ~< ~P A ) ) | 
						
							| 10 | 8 9 | sylib |  |-  ( ( A ~< B /\ B ~< ~P A ) -> -. A. x -. ( A ~< x /\ x ~< ~P A ) ) | 
						
							| 11 |  | elgch |  |-  ( A e. GCH -> ( A e. GCH <-> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) ) | 
						
							| 12 | 11 | ibi |  |-  ( A e. GCH -> ( A e. Fin \/ A. x -. ( A ~< x /\ x ~< ~P A ) ) ) | 
						
							| 13 | 12 | orcomd |  |-  ( A e. GCH -> ( A. x -. ( A ~< x /\ x ~< ~P A ) \/ A e. Fin ) ) | 
						
							| 14 | 13 | ord |  |-  ( A e. GCH -> ( -. A. x -. ( A ~< x /\ x ~< ~P A ) -> A e. Fin ) ) | 
						
							| 15 | 10 14 | syl5 |  |-  ( A e. GCH -> ( ( A ~< B /\ B ~< ~P A ) -> A e. Fin ) ) | 
						
							| 16 | 15 | 3impib |  |-  ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) |