| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simpr | 
							 |-  ( ( GCH = _V /\ x e. InaccW ) -> x e. InaccW )  | 
						
						
							| 2 | 
							
								
							 | 
							idd | 
							 |-  ( ( GCH = _V /\ x e. InaccW ) -> ( x =/= (/) -> x =/= (/) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							idd | 
							 |-  ( ( GCH = _V /\ x e. InaccW ) -> ( ( cf ` x ) = x -> ( cf ` x ) = x ) )  | 
						
						
							| 4 | 
							
								
							 | 
							pwfi | 
							 |-  ( y e. Fin <-> ~P y e. Fin )  | 
						
						
							| 5 | 
							
								
							 | 
							isfinite | 
							 |-  ( ~P y e. Fin <-> ~P y ~< _om )  | 
						
						
							| 6 | 
							
								
							 | 
							winainf | 
							 |-  ( x e. InaccW -> _om C_ x )  | 
						
						
							| 7 | 
							
								
							 | 
							ssdomg | 
							 |-  ( x e. InaccW -> ( _om C_ x -> _om ~<_ x ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							mpd | 
							 |-  ( x e. InaccW -> _om ~<_ x )  | 
						
						
							| 9 | 
							
								
							 | 
							sdomdomtr | 
							 |-  ( ( ~P y ~< _om /\ _om ~<_ x ) -> ~P y ~< x )  | 
						
						
							| 10 | 
							
								9
							 | 
							expcom | 
							 |-  ( _om ~<_ x -> ( ~P y ~< _om -> ~P y ~< x ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							syl | 
							 |-  ( x e. InaccW -> ( ~P y ~< _om -> ~P y ~< x ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							biimtrid | 
							 |-  ( x e. InaccW -> ( ~P y e. Fin -> ~P y ~< x ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							biimtrid | 
							 |-  ( x e. InaccW -> ( y e. Fin -> ~P y ~< x ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad3antlr | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( y e. Fin -> ~P y ~< x ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							a1dd | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( y e. Fin -> ( y ~< z -> ~P y ~< x ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 17 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> GCH = _V )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							eleqtrrid | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> y e. GCH )  | 
						
						
							| 19 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> -. y e. Fin )  | 
						
						
							| 20 | 
							
								
							 | 
							gchinf | 
							 |-  ( ( y e. GCH /\ -. y e. Fin ) -> _om ~<_ y )  | 
						
						
							| 21 | 
							
								18 19 20
							 | 
							syl2anc | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> _om ~<_ y )  | 
						
						
							| 22 | 
							
								
							 | 
							vex | 
							 |-  z e. _V  | 
						
						
							| 23 | 
							
								22 17
							 | 
							eleqtrrid | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> z e. GCH )  | 
						
						
							| 24 | 
							
								
							 | 
							gchpwdom | 
							 |-  ( ( _om ~<_ y /\ y e. GCH /\ z e. GCH ) -> ( y ~< z <-> ~P y ~<_ z ) )  | 
						
						
							| 25 | 
							
								21 18 23 24
							 | 
							syl3anc | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> ( y ~< z <-> ~P y ~<_ z ) )  | 
						
						
							| 26 | 
							
								
							 | 
							winacard | 
							 |-  ( x e. InaccW -> ( card ` x ) = x )  | 
						
						
							| 27 | 
							
								
							 | 
							iscard | 
							 |-  ( ( card ` x ) = x <-> ( x e. On /\ A. z e. x z ~< x ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							simprbi | 
							 |-  ( ( card ` x ) = x -> A. z e. x z ~< x )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							syl | 
							 |-  ( x e. InaccW -> A. z e. x z ~< x )  | 
						
						
							| 30 | 
							
								29
							 | 
							ad2antlr | 
							 |-  ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) -> A. z e. x z ~< x )  | 
						
						
							| 31 | 
							
								30
							 | 
							r19.21bi | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> z ~< x )  | 
						
						
							| 32 | 
							
								
							 | 
							domsdomtr | 
							 |-  ( ( ~P y ~<_ z /\ z ~< x ) -> ~P y ~< x )  | 
						
						
							| 33 | 
							
								32
							 | 
							expcom | 
							 |-  ( z ~< x -> ( ~P y ~<_ z -> ~P y ~< x ) )  | 
						
						
							| 34 | 
							
								31 33
							 | 
							syl | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( ~P y ~<_ z -> ~P y ~< x ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantrr | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> ( ~P y ~<_ z -> ~P y ~< x ) )  | 
						
						
							| 36 | 
							
								25 35
							 | 
							sylbid | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ ( z e. x /\ -. y e. Fin ) ) -> ( y ~< z -> ~P y ~< x ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							expr | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( -. y e. Fin -> ( y ~< z -> ~P y ~< x ) ) )  | 
						
						
							| 38 | 
							
								15 37
							 | 
							pm2.61d | 
							 |-  ( ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) /\ z e. x ) -> ( y ~< z -> ~P y ~< x ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							rexlimdva | 
							 |-  ( ( ( GCH = _V /\ x e. InaccW ) /\ y e. x ) -> ( E. z e. x y ~< z -> ~P y ~< x ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							ralimdva | 
							 |-  ( ( GCH = _V /\ x e. InaccW ) -> ( A. y e. x E. z e. x y ~< z -> A. y e. x ~P y ~< x ) )  | 
						
						
							| 41 | 
							
								2 3 40
							 | 
							3anim123d | 
							 |-  ( ( GCH = _V /\ x e. InaccW ) -> ( ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) -> ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							elwina | 
							 |-  ( x e. InaccW <-> ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x E. z e. x y ~< z ) )  | 
						
						
							| 43 | 
							
								
							 | 
							elina | 
							 |-  ( x e. Inacc <-> ( x =/= (/) /\ ( cf ` x ) = x /\ A. y e. x ~P y ~< x ) )  | 
						
						
							| 44 | 
							
								41 42 43
							 | 
							3imtr4g | 
							 |-  ( ( GCH = _V /\ x e. InaccW ) -> ( x e. InaccW -> x e. Inacc ) )  | 
						
						
							| 45 | 
							
								1 44
							 | 
							mpd | 
							 |-  ( ( GCH = _V /\ x e. InaccW ) -> x e. Inacc )  | 
						
						
							| 46 | 
							
								45
							 | 
							ex | 
							 |-  ( GCH = _V -> ( x e. InaccW -> x e. Inacc ) )  | 
						
						
							| 47 | 
							
								
							 | 
							inawina | 
							 |-  ( x e. Inacc -> x e. InaccW )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							impbid1 | 
							 |-  ( GCH = _V -> ( x e. InaccW <-> x e. Inacc ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							eqrdv | 
							 |-  ( GCH = _V -> InaccW = Inacc )  |