| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gchdju1 |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| 1o ) ~~ A ) | 
						
							| 2 | 1 | ensymd |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A |_| 1o ) ) | 
						
							| 3 |  | isfin4-2 |  |-  ( A e. GCH -> ( A e. Fin4 <-> -. _om ~<_ A ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A e. Fin4 <-> -. _om ~<_ A ) ) | 
						
							| 5 |  | isfin4p1 |  |-  ( A e. Fin4 <-> A ~< ( A |_| 1o ) ) | 
						
							| 6 |  | sdomnen |  |-  ( A ~< ( A |_| 1o ) -> -. A ~~ ( A |_| 1o ) ) | 
						
							| 7 | 5 6 | sylbi |  |-  ( A e. Fin4 -> -. A ~~ ( A |_| 1o ) ) | 
						
							| 8 | 4 7 | biimtrrdi |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( -. _om ~<_ A -> -. A ~~ ( A |_| 1o ) ) ) | 
						
							| 9 | 2 8 | mt4d |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> _om ~<_ A ) |