| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simprr |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> B ~<_ ~P A ) | 
						
							| 2 |  | brdom2 |  |-  ( B ~<_ ~P A <-> ( B ~< ~P A \/ B ~~ ~P A ) ) | 
						
							| 3 | 1 2 | sylib |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( B ~< ~P A \/ B ~~ ~P A ) ) | 
						
							| 4 |  | gchen1 |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~< ~P A ) ) -> A ~~ B ) | 
						
							| 5 | 4 | expr |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ A ~<_ B ) -> ( B ~< ~P A -> A ~~ B ) ) | 
						
							| 6 | 5 | adantrr |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( B ~< ~P A -> A ~~ B ) ) | 
						
							| 7 | 6 | orim1d |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( ( B ~< ~P A \/ B ~~ ~P A ) -> ( A ~~ B \/ B ~~ ~P A ) ) ) | 
						
							| 8 | 3 7 | mpd |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ B /\ B ~<_ ~P A ) ) -> ( A ~~ B \/ B ~~ ~P A ) ) |