| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl2 |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> A e. GCH ) | 
						
							| 2 | 1 | pwexd |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A e. _V ) | 
						
							| 3 |  | simpl3 |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B e. GCH ) | 
						
							| 4 |  | djudoml |  |-  ( ( ~P A e. _V /\ B e. GCH ) -> ~P A ~<_ ( ~P A |_| B ) ) | 
						
							| 5 | 2 3 4 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ ( ~P A |_| B ) ) | 
						
							| 6 |  | domen2 |  |-  ( B ~~ ( ~P A |_| B ) -> ( ~P A ~<_ B <-> ~P A ~<_ ( ~P A |_| B ) ) ) | 
						
							| 7 | 5 6 | syl5ibrcom |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~~ ( ~P A |_| B ) -> ~P A ~<_ B ) ) | 
						
							| 8 |  | djucomen |  |-  ( ( B e. GCH /\ ~P A e. _V ) -> ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) | 
						
							| 9 | 3 2 8 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) | 
						
							| 10 |  | entr |  |-  ( ( ( B |_| ~P A ) ~~ ( ~P A |_| B ) /\ ( ~P A |_| B ) ~~ ~P B ) -> ( B |_| ~P A ) ~~ ~P B ) | 
						
							| 11 | 10 | ex |  |-  ( ( B |_| ~P A ) ~~ ( ~P A |_| B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ( B |_| ~P A ) ~~ ~P B ) ) | 
						
							| 12 | 9 11 | syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ( B |_| ~P A ) ~~ ~P B ) ) | 
						
							| 13 |  | ensym |  |-  ( ( B |_| ~P A ) ~~ ~P B -> ~P B ~~ ( B |_| ~P A ) ) | 
						
							| 14 |  | endom |  |-  ( ~P B ~~ ( B |_| ~P A ) -> ~P B ~<_ ( B |_| ~P A ) ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( B |_| ~P A ) ~~ ~P B -> ~P B ~<_ ( B |_| ~P A ) ) | 
						
							| 16 | 12 15 | syl6 |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ~P B ~<_ ( B |_| ~P A ) ) ) | 
						
							| 17 |  | domsdomtr |  |-  ( ( _om ~<_ A /\ A ~< B ) -> _om ~< B ) | 
						
							| 18 | 17 | 3ad2antl1 |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> _om ~< B ) | 
						
							| 19 |  | sdomnsym |  |-  ( _om ~< B -> -. B ~< _om ) | 
						
							| 20 | 18 19 | syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. B ~< _om ) | 
						
							| 21 |  | isfinite |  |-  ( B e. Fin <-> B ~< _om ) | 
						
							| 22 | 20 21 | sylnibr |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. B e. Fin ) | 
						
							| 23 |  | gchdjuidm |  |-  ( ( B e. GCH /\ -. B e. Fin ) -> ( B |_| B ) ~~ B ) | 
						
							| 24 | 3 22 23 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| B ) ~~ B ) | 
						
							| 25 |  | pwen |  |-  ( ( B |_| B ) ~~ B -> ~P ( B |_| B ) ~~ ~P B ) | 
						
							| 26 |  | domen1 |  |-  ( ~P ( B |_| B ) ~~ ~P B -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) <-> ~P B ~<_ ( B |_| ~P A ) ) ) | 
						
							| 27 | 24 25 26 | 3syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) <-> ~P B ~<_ ( B |_| ~P A ) ) ) | 
						
							| 28 |  | pwdjudom |  |-  ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) -> ~P B ~<_ ~P A ) | 
						
							| 29 |  | canth2g |  |-  ( B e. GCH -> B ~< ~P B ) | 
						
							| 30 |  | sdomdomtr |  |-  ( ( B ~< ~P B /\ ~P B ~<_ ~P A ) -> B ~< ~P A ) | 
						
							| 31 | 30 | ex |  |-  ( B ~< ~P B -> ( ~P B ~<_ ~P A -> B ~< ~P A ) ) | 
						
							| 32 | 3 29 31 | 3syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ~P A -> B ~< ~P A ) ) | 
						
							| 33 |  | gchi |  |-  ( ( A e. GCH /\ A ~< B /\ B ~< ~P A ) -> A e. Fin ) | 
						
							| 34 | 33 | 3expia |  |-  ( ( A e. GCH /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) | 
						
							| 35 | 34 | 3ad2antl2 |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~< ~P A -> A e. Fin ) ) | 
						
							| 36 |  | isfinite |  |-  ( A e. Fin <-> A ~< _om ) | 
						
							| 37 |  | simpl1 |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> _om ~<_ A ) | 
						
							| 38 |  | domnsym |  |-  ( _om ~<_ A -> -. A ~< _om ) | 
						
							| 39 | 37 38 | syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> -. A ~< _om ) | 
						
							| 40 | 39 | pm2.21d |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( A ~< _om -> ~P A ~<_ B ) ) | 
						
							| 41 | 36 40 | biimtrid |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( A e. Fin -> ~P A ~<_ B ) ) | 
						
							| 42 | 32 35 41 | 3syld |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ~P A -> ~P A ~<_ B ) ) | 
						
							| 43 | 28 42 | syl5 |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P ( B |_| B ) ~<_ ( B |_| ~P A ) -> ~P A ~<_ B ) ) | 
						
							| 44 | 27 43 | sylbird |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B ~<_ ( B |_| ~P A ) -> ~P A ~<_ B ) ) | 
						
							| 45 | 16 44 | syld |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ( ~P A |_| B ) ~~ ~P B -> ~P A ~<_ B ) ) | 
						
							| 46 |  | djudoml |  |-  ( ( B e. GCH /\ ~P A e. _V ) -> B ~<_ ( B |_| ~P A ) ) | 
						
							| 47 | 3 2 46 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ( B |_| ~P A ) ) | 
						
							| 48 |  | domentr |  |-  ( ( B ~<_ ( B |_| ~P A ) /\ ( B |_| ~P A ) ~~ ( ~P A |_| B ) ) -> B ~<_ ( ~P A |_| B ) ) | 
						
							| 49 | 47 9 48 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ( ~P A |_| B ) ) | 
						
							| 50 |  | sdomdom |  |-  ( A ~< B -> A ~<_ B ) | 
						
							| 51 | 50 | adantl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> A ~<_ B ) | 
						
							| 52 |  | pwdom |  |-  ( A ~<_ B -> ~P A ~<_ ~P B ) | 
						
							| 53 | 51 52 | syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ ~P B ) | 
						
							| 54 |  | djudom1 |  |-  ( ( ~P A ~<_ ~P B /\ B e. GCH ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| B ) ) | 
						
							| 55 | 53 3 54 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| B ) ) | 
						
							| 56 |  | sdomdom |  |-  ( B ~< ~P B -> B ~<_ ~P B ) | 
						
							| 57 | 3 29 56 | 3syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> B ~<_ ~P B ) | 
						
							| 58 | 3 | pwexd |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P B e. _V ) | 
						
							| 59 |  | djudom2 |  |-  ( ( B ~<_ ~P B /\ ~P B e. _V ) -> ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) | 
						
							| 60 | 57 58 59 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) | 
						
							| 61 |  | domtr |  |-  ( ( ( ~P A |_| B ) ~<_ ( ~P B |_| B ) /\ ( ~P B |_| B ) ~<_ ( ~P B |_| ~P B ) ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) ) | 
						
							| 62 | 55 60 61 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) ) | 
						
							| 63 |  | pwdju1 |  |-  ( B e. GCH -> ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) ) | 
						
							| 64 | 3 63 | syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) ) | 
						
							| 65 |  | gchdju1 |  |-  ( ( B e. GCH /\ -. B e. Fin ) -> ( B |_| 1o ) ~~ B ) | 
						
							| 66 | 3 22 65 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B |_| 1o ) ~~ B ) | 
						
							| 67 |  | pwen |  |-  ( ( B |_| 1o ) ~~ B -> ~P ( B |_| 1o ) ~~ ~P B ) | 
						
							| 68 | 66 67 | syl |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P ( B |_| 1o ) ~~ ~P B ) | 
						
							| 69 |  | entr |  |-  ( ( ( ~P B |_| ~P B ) ~~ ~P ( B |_| 1o ) /\ ~P ( B |_| 1o ) ~~ ~P B ) -> ( ~P B |_| ~P B ) ~~ ~P B ) | 
						
							| 70 | 64 68 69 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P B |_| ~P B ) ~~ ~P B ) | 
						
							| 71 |  | domentr |  |-  ( ( ( ~P A |_| B ) ~<_ ( ~P B |_| ~P B ) /\ ( ~P B |_| ~P B ) ~~ ~P B ) -> ( ~P A |_| B ) ~<_ ~P B ) | 
						
							| 72 | 62 70 71 | syl2anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( ~P A |_| B ) ~<_ ~P B ) | 
						
							| 73 |  | gchor |  |-  ( ( ( B e. GCH /\ -. B e. Fin ) /\ ( B ~<_ ( ~P A |_| B ) /\ ( ~P A |_| B ) ~<_ ~P B ) ) -> ( B ~~ ( ~P A |_| B ) \/ ( ~P A |_| B ) ~~ ~P B ) ) | 
						
							| 74 | 3 22 49 72 73 | syl22anc |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ( B ~~ ( ~P A |_| B ) \/ ( ~P A |_| B ) ~~ ~P B ) ) | 
						
							| 75 | 7 45 74 | mpjaod |  |-  ( ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) /\ A ~< B ) -> ~P A ~<_ B ) | 
						
							| 76 | 75 | ex |  |-  ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) -> ( A ~< B -> ~P A ~<_ B ) ) | 
						
							| 77 |  | reldom |  |-  Rel ~<_ | 
						
							| 78 | 77 | brrelex1i |  |-  ( ~P A ~<_ B -> ~P A e. _V ) | 
						
							| 79 |  | pwexb |  |-  ( A e. _V <-> ~P A e. _V ) | 
						
							| 80 |  | canth2g |  |-  ( A e. _V -> A ~< ~P A ) | 
						
							| 81 | 79 80 | sylbir |  |-  ( ~P A e. _V -> A ~< ~P A ) | 
						
							| 82 | 78 81 | syl |  |-  ( ~P A ~<_ B -> A ~< ~P A ) | 
						
							| 83 |  | sdomdomtr |  |-  ( ( A ~< ~P A /\ ~P A ~<_ B ) -> A ~< B ) | 
						
							| 84 | 82 83 | mpancom |  |-  ( ~P A ~<_ B -> A ~< B ) | 
						
							| 85 | 76 84 | impbid1 |  |-  ( ( _om ~<_ A /\ A e. GCH /\ B e. GCH ) -> ( A ~< B <-> ~P A ~<_ B ) ) |