| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0ex |  |-  (/) e. _V | 
						
							| 2 | 1 | a1i |  |-  ( -. A e. Fin -> (/) e. _V ) | 
						
							| 3 |  | xpsneng |  |-  ( ( A e. GCH /\ (/) e. _V ) -> ( A X. { (/) } ) ~~ A ) | 
						
							| 4 | 2 3 | sylan2 |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. { (/) } ) ~~ A ) | 
						
							| 5 | 4 | ensymd |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A X. { (/) } ) ) | 
						
							| 6 |  | df1o2 |  |-  1o = { (/) } | 
						
							| 7 |  | id |  |-  ( A = (/) -> A = (/) ) | 
						
							| 8 |  | 0fi |  |-  (/) e. Fin | 
						
							| 9 | 7 8 | eqeltrdi |  |-  ( A = (/) -> A e. Fin ) | 
						
							| 10 | 9 | necon3bi |  |-  ( -. A e. Fin -> A =/= (/) ) | 
						
							| 11 | 10 | adantl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A =/= (/) ) | 
						
							| 12 |  | 0sdomg |  |-  ( A e. GCH -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( (/) ~< A <-> A =/= (/) ) ) | 
						
							| 14 | 11 13 | mpbird |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> (/) ~< A ) | 
						
							| 15 |  | 0sdom1dom |  |-  ( (/) ~< A <-> 1o ~<_ A ) | 
						
							| 16 | 14 15 | sylib |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> 1o ~<_ A ) | 
						
							| 17 | 6 16 | eqbrtrrid |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> { (/) } ~<_ A ) | 
						
							| 18 |  | xpdom2g |  |-  ( ( A e. GCH /\ { (/) } ~<_ A ) -> ( A X. { (/) } ) ~<_ ( A X. A ) ) | 
						
							| 19 | 17 18 | syldan |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. { (/) } ) ~<_ ( A X. A ) ) | 
						
							| 20 |  | endomtr |  |-  ( ( A ~~ ( A X. { (/) } ) /\ ( A X. { (/) } ) ~<_ ( A X. A ) ) -> A ~<_ ( A X. A ) ) | 
						
							| 21 | 5 19 20 | syl2anc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ( A X. A ) ) | 
						
							| 22 |  | canth2g |  |-  ( A e. GCH -> A ~< ~P A ) | 
						
							| 23 | 22 | adantr |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~< ~P A ) | 
						
							| 24 |  | sdomdom |  |-  ( A ~< ~P A -> A ~<_ ~P A ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~<_ ~P A ) | 
						
							| 26 |  | xpdom1g |  |-  ( ( A e. GCH /\ A ~<_ ~P A ) -> ( A X. A ) ~<_ ( ~P A X. A ) ) | 
						
							| 27 | 25 26 | syldan |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~<_ ( ~P A X. A ) ) | 
						
							| 28 |  | pwexg |  |-  ( A e. GCH -> ~P A e. _V ) | 
						
							| 29 | 28 | adantr |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ~P A e. _V ) | 
						
							| 30 |  | xpdom2g |  |-  ( ( ~P A e. _V /\ A ~<_ ~P A ) -> ( ~P A X. A ) ~<_ ( ~P A X. ~P A ) ) | 
						
							| 31 | 29 25 30 | syl2anc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A X. A ) ~<_ ( ~P A X. ~P A ) ) | 
						
							| 32 |  | domtr |  |-  ( ( ( A X. A ) ~<_ ( ~P A X. A ) /\ ( ~P A X. A ) ~<_ ( ~P A X. ~P A ) ) -> ( A X. A ) ~<_ ( ~P A X. ~P A ) ) | 
						
							| 33 | 27 31 32 | syl2anc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~<_ ( ~P A X. ~P A ) ) | 
						
							| 34 |  | simpl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A e. GCH ) | 
						
							| 35 |  | pwdjuen |  |-  ( ( A e. GCH /\ A e. GCH ) -> ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) ) | 
						
							| 36 | 34 35 | syldan |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ~P ( A |_| A ) ~~ ( ~P A X. ~P A ) ) | 
						
							| 37 | 36 | ensymd |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A X. ~P A ) ~~ ~P ( A |_| A ) ) | 
						
							| 38 |  | gchdjuidm |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A |_| A ) ~~ A ) | 
						
							| 39 |  | pwen |  |-  ( ( A |_| A ) ~~ A -> ~P ( A |_| A ) ~~ ~P A ) | 
						
							| 40 | 38 39 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ~P ( A |_| A ) ~~ ~P A ) | 
						
							| 41 |  | entr |  |-  ( ( ( ~P A X. ~P A ) ~~ ~P ( A |_| A ) /\ ~P ( A |_| A ) ~~ ~P A ) -> ( ~P A X. ~P A ) ~~ ~P A ) | 
						
							| 42 | 37 40 41 | syl2anc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( ~P A X. ~P A ) ~~ ~P A ) | 
						
							| 43 |  | domentr |  |-  ( ( ( A X. A ) ~<_ ( ~P A X. ~P A ) /\ ( ~P A X. ~P A ) ~~ ~P A ) -> ( A X. A ) ~<_ ~P A ) | 
						
							| 44 | 33 42 43 | syl2anc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~<_ ~P A ) | 
						
							| 45 |  | gchinf |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> _om ~<_ A ) | 
						
							| 46 |  | pwxpndom |  |-  ( _om ~<_ A -> -. ~P A ~<_ ( A X. A ) ) | 
						
							| 47 | 45 46 | syl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> -. ~P A ~<_ ( A X. A ) ) | 
						
							| 48 |  | ensym |  |-  ( ( A X. A ) ~~ ~P A -> ~P A ~~ ( A X. A ) ) | 
						
							| 49 |  | endom |  |-  ( ~P A ~~ ( A X. A ) -> ~P A ~<_ ( A X. A ) ) | 
						
							| 50 | 48 49 | syl |  |-  ( ( A X. A ) ~~ ~P A -> ~P A ~<_ ( A X. A ) ) | 
						
							| 51 | 47 50 | nsyl |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> -. ( A X. A ) ~~ ~P A ) | 
						
							| 52 |  | brsdom |  |-  ( ( A X. A ) ~< ~P A <-> ( ( A X. A ) ~<_ ~P A /\ -. ( A X. A ) ~~ ~P A ) ) | 
						
							| 53 | 44 51 52 | sylanbrc |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~< ~P A ) | 
						
							| 54 | 21 53 | jca |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A ~<_ ( A X. A ) /\ ( A X. A ) ~< ~P A ) ) | 
						
							| 55 |  | gchen1 |  |-  ( ( ( A e. GCH /\ -. A e. Fin ) /\ ( A ~<_ ( A X. A ) /\ ( A X. A ) ~< ~P A ) ) -> A ~~ ( A X. A ) ) | 
						
							| 56 | 54 55 | mpdan |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> A ~~ ( A X. A ) ) | 
						
							| 57 | 56 | ensymd |  |-  ( ( A e. GCH /\ -. A e. Fin ) -> ( A X. A ) ~~ A ) |