Metamath Proof Explorer


Theorem ge0addcl

Description: The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014)

Ref Expression
Assertion ge0addcl
|- ( ( A e. ( 0 [,) +oo ) /\ B e. ( 0 [,) +oo ) ) -> ( A + B ) e. ( 0 [,) +oo ) )

Proof

Step Hyp Ref Expression
1 elrege0
 |-  ( A e. ( 0 [,) +oo ) <-> ( A e. RR /\ 0 <_ A ) )
2 elrege0
 |-  ( B e. ( 0 [,) +oo ) <-> ( B e. RR /\ 0 <_ B ) )
3 readdcl
 |-  ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR )
4 3 ad2ant2r
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A + B ) e. RR )
5 addge0
 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( 0 <_ A /\ 0 <_ B ) ) -> 0 <_ ( A + B ) )
6 5 an4s
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> 0 <_ ( A + B ) )
7 elrege0
 |-  ( ( A + B ) e. ( 0 [,) +oo ) <-> ( ( A + B ) e. RR /\ 0 <_ ( A + B ) ) )
8 4 6 7 sylanbrc
 |-  ( ( ( A e. RR /\ 0 <_ A ) /\ ( B e. RR /\ 0 <_ B ) ) -> ( A + B ) e. ( 0 [,) +oo ) )
9 1 2 8 syl2anb
 |-  ( ( A e. ( 0 [,) +oo ) /\ B e. ( 0 [,) +oo ) ) -> ( A + B ) e. ( 0 [,) +oo ) )