Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge0gtmnf | |- ( ( A e. RR* /\ 0 <_ A ) -> -oo < A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnflt0 | |- -oo < 0 |
|
| 2 | mnfxr | |- -oo e. RR* |
|
| 3 | 0xr | |- 0 e. RR* |
|
| 4 | xrltletr | |- ( ( -oo e. RR* /\ 0 e. RR* /\ A e. RR* ) -> ( ( -oo < 0 /\ 0 <_ A ) -> -oo < A ) ) |
|
| 5 | 2 3 4 | mp3an12 | |- ( A e. RR* -> ( ( -oo < 0 /\ 0 <_ A ) -> -oo < A ) ) |
| 6 | 5 | imp | |- ( ( A e. RR* /\ ( -oo < 0 /\ 0 <_ A ) ) -> -oo < A ) |
| 7 | 1 6 | mpanr1 | |- ( ( A e. RR* /\ 0 <_ A ) -> -oo < A ) |