Description: A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ge0lere.a | |- ( ph -> A e. RR ) |
|
ge0lere.b | |- ( ph -> B e. ( 0 [,] +oo ) ) |
||
ge0lere.l | |- ( ph -> B <_ A ) |
||
Assertion | ge0lere | |- ( ph -> B e. RR ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ge0lere.a | |- ( ph -> A e. RR ) |
|
2 | ge0lere.b | |- ( ph -> B e. ( 0 [,] +oo ) ) |
|
3 | ge0lere.l | |- ( ph -> B <_ A ) |
|
4 | iccssxr | |- ( 0 [,] +oo ) C_ RR* |
|
5 | 4 2 | sselid | |- ( ph -> B e. RR* ) |
6 | pnfxr | |- +oo e. RR* |
|
7 | 6 | a1i | |- ( ph -> +oo e. RR* ) |
8 | 1 | rexrd | |- ( ph -> A e. RR* ) |
9 | 1 | ltpnfd | |- ( ph -> A < +oo ) |
10 | 5 8 7 3 9 | xrlelttrd | |- ( ph -> B < +oo ) |
11 | 5 7 10 | xrltned | |- ( ph -> B =/= +oo ) |
12 | ge0xrre | |- ( ( B e. ( 0 [,] +oo ) /\ B =/= +oo ) -> B e. RR ) |
|
13 | 2 11 12 | syl2anc | |- ( ph -> B e. RR ) |