Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ge0nemnf | |- ( ( A e. RR* /\ 0 <_ A ) -> A =/= -oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ge0gtmnf | |- ( ( A e. RR* /\ 0 <_ A ) -> -oo < A ) |
|
| 2 | ngtmnft | |- ( A e. RR* -> ( A = -oo <-> -. -oo < A ) ) |
|
| 3 | 2 | adantr | |- ( ( A e. RR* /\ 0 <_ A ) -> ( A = -oo <-> -. -oo < A ) ) |
| 4 | 3 | necon2abid | |- ( ( A e. RR* /\ 0 <_ A ) -> ( -oo < A <-> A =/= -oo ) ) |
| 5 | 1 4 | mpbid | |- ( ( A e. RR* /\ 0 <_ A ) -> A =/= -oo ) |