Metamath Proof Explorer


Theorem ge0nemnf

Description: A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Assertion ge0nemnf
|- ( ( A e. RR* /\ 0 <_ A ) -> A =/= -oo )

Proof

Step Hyp Ref Expression
1 ge0gtmnf
 |-  ( ( A e. RR* /\ 0 <_ A ) -> -oo < A )
2 ngtmnft
 |-  ( A e. RR* -> ( A = -oo <-> -. -oo < A ) )
3 2 adantr
 |-  ( ( A e. RR* /\ 0 <_ A ) -> ( A = -oo <-> -. -oo < A ) )
4 3 necon2abid
 |-  ( ( A e. RR* /\ 0 <_ A ) -> ( -oo < A <-> A =/= -oo ) )
5 1 4 mpbid
 |-  ( ( A e. RR* /\ 0 <_ A ) -> A =/= -oo )