| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano2re |
|- ( A e. RR -> ( A + 1 ) e. RR ) |
| 2 |
1
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A + 1 ) e. RR ) |
| 3 |
|
0red |
|- ( ( A e. RR /\ 0 <_ A ) -> 0 e. RR ) |
| 4 |
|
simpl |
|- ( ( A e. RR /\ 0 <_ A ) -> A e. RR ) |
| 5 |
|
simpr |
|- ( ( A e. RR /\ 0 <_ A ) -> 0 <_ A ) |
| 6 |
|
ltp1 |
|- ( A e. RR -> A < ( A + 1 ) ) |
| 7 |
6
|
adantr |
|- ( ( A e. RR /\ 0 <_ A ) -> A < ( A + 1 ) ) |
| 8 |
3 4 2 5 7
|
lelttrd |
|- ( ( A e. RR /\ 0 <_ A ) -> 0 < ( A + 1 ) ) |
| 9 |
|
elrp |
|- ( ( A + 1 ) e. RR+ <-> ( ( A + 1 ) e. RR /\ 0 < ( A + 1 ) ) ) |
| 10 |
2 8 9
|
sylanbrc |
|- ( ( A e. RR /\ 0 <_ A ) -> ( A + 1 ) e. RR+ ) |