Metamath Proof Explorer


Theorem ge0p1rpd

Description: A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpgecld.1
|- ( ph -> A e. RR )
ge0p1rp.2
|- ( ph -> 0 <_ A )
Assertion ge0p1rpd
|- ( ph -> ( A + 1 ) e. RR+ )

Proof

Step Hyp Ref Expression
1 rpgecld.1
 |-  ( ph -> A e. RR )
2 ge0p1rp.2
 |-  ( ph -> 0 <_ A )
3 ge0p1rp
 |-  ( ( A e. RR /\ 0 <_ A ) -> ( A + 1 ) e. RR+ )
4 1 2 3 syl2anc
 |-  ( ph -> ( A + 1 ) e. RR+ )