| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elxrge0 |  |-  ( A e. ( 0 [,] +oo ) <-> ( A e. RR* /\ 0 <_ A ) ) | 
						
							| 2 |  | elxrge0 |  |-  ( B e. ( 0 [,] +oo ) <-> ( B e. RR* /\ 0 <_ B ) ) | 
						
							| 3 |  | xmulcl |  |-  ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) e. RR* ) | 
						
							| 4 | 3 | ad2ant2r |  |-  ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> ( A *e B ) e. RR* ) | 
						
							| 5 |  | xmulge0 |  |-  ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> 0 <_ ( A *e B ) ) | 
						
							| 6 |  | elxrge0 |  |-  ( ( A *e B ) e. ( 0 [,] +oo ) <-> ( ( A *e B ) e. RR* /\ 0 <_ ( A *e B ) ) ) | 
						
							| 7 | 4 5 6 | sylanbrc |  |-  ( ( ( A e. RR* /\ 0 <_ A ) /\ ( B e. RR* /\ 0 <_ B ) ) -> ( A *e B ) e. ( 0 [,] +oo ) ) | 
						
							| 8 | 1 2 7 | syl2anb |  |-  ( ( A e. ( 0 [,] +oo ) /\ B e. ( 0 [,] +oo ) ) -> ( A *e B ) e. ( 0 [,] +oo ) ) |