| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2re |  |-  2 e. RR | 
						
							| 2 | 1 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. RR ) | 
						
							| 3 |  | eluzelre |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. RR ) | 
						
							| 4 | 2 3 | remulcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 x. N ) e. RR ) | 
						
							| 5 |  | eluzle |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ N ) | 
						
							| 6 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 7 | 6 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 - 1 ) = 1 ) | 
						
							| 8 | 7 | oveq1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 - 1 ) x. N ) = ( 1 x. N ) ) | 
						
							| 9 |  | eluzelcn |  |-  ( N e. ( ZZ>= ` 2 ) -> N e. CC ) | 
						
							| 10 | 9 | mullidd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 1 x. N ) = N ) | 
						
							| 11 | 8 10 | eqtrd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 - 1 ) x. N ) = N ) | 
						
							| 12 | 5 11 | breqtrrd |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ ( ( 2 - 1 ) x. N ) ) | 
						
							| 13 |  | 2cnd |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. CC ) | 
						
							| 14 | 13 9 | mulsubfacd |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( 2 x. N ) - N ) = ( ( 2 - 1 ) x. N ) ) | 
						
							| 15 | 12 14 | breqtrrd |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 <_ ( ( 2 x. N ) - N ) ) | 
						
							| 16 | 2 4 3 15 | lesubd |  |-  ( N e. ( ZZ>= ` 2 ) -> N <_ ( ( 2 x. N ) - 2 ) ) | 
						
							| 17 | 13 9 | muls1d |  |-  ( N e. ( ZZ>= ` 2 ) -> ( 2 x. ( N - 1 ) ) = ( ( 2 x. N ) - 2 ) ) | 
						
							| 18 | 16 17 | breqtrrd |  |-  ( N e. ( ZZ>= ` 2 ) -> N <_ ( 2 x. ( N - 1 ) ) ) | 
						
							| 19 |  | 1red |  |-  ( N e. ( ZZ>= ` 2 ) -> 1 e. RR ) | 
						
							| 20 | 3 19 | resubcld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N - 1 ) e. RR ) | 
						
							| 21 |  | 2rp |  |-  2 e. RR+ | 
						
							| 22 | 21 | a1i |  |-  ( N e. ( ZZ>= ` 2 ) -> 2 e. RR+ ) | 
						
							| 23 | 3 20 22 | ledivmuld |  |-  ( N e. ( ZZ>= ` 2 ) -> ( ( N / 2 ) <_ ( N - 1 ) <-> N <_ ( 2 x. ( N - 1 ) ) ) ) | 
						
							| 24 | 18 23 | mpbird |  |-  ( N e. ( ZZ>= ` 2 ) -> ( N / 2 ) <_ ( N - 1 ) ) |