Step |
Hyp |
Ref |
Expression |
1 |
|
eluz2b2 |
|- ( X e. ( ZZ>= ` 2 ) <-> ( X e. NN /\ 1 < X ) ) |
2 |
|
4z |
|- 4 e. ZZ |
3 |
2
|
a1i |
|- ( ( ( X e. NN /\ 1 < X ) /\ X e/ Prime ) -> 4 e. ZZ ) |
4 |
|
nnz |
|- ( X e. NN -> X e. ZZ ) |
5 |
4
|
ad2antrr |
|- ( ( ( X e. NN /\ 1 < X ) /\ X e/ Prime ) -> X e. ZZ ) |
6 |
|
1z |
|- 1 e. ZZ |
7 |
|
zltp1le |
|- ( ( 1 e. ZZ /\ X e. ZZ ) -> ( 1 < X <-> ( 1 + 1 ) <_ X ) ) |
8 |
6 4 7
|
sylancr |
|- ( X e. NN -> ( 1 < X <-> ( 1 + 1 ) <_ X ) ) |
9 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
10 |
9
|
breq1i |
|- ( ( 1 + 1 ) <_ X <-> 2 <_ X ) |
11 |
8 10
|
bitrdi |
|- ( X e. NN -> ( 1 < X <-> 2 <_ X ) ) |
12 |
|
2re |
|- 2 e. RR |
13 |
|
nnre |
|- ( X e. NN -> X e. RR ) |
14 |
|
leloe |
|- ( ( 2 e. RR /\ X e. RR ) -> ( 2 <_ X <-> ( 2 < X \/ 2 = X ) ) ) |
15 |
12 13 14
|
sylancr |
|- ( X e. NN -> ( 2 <_ X <-> ( 2 < X \/ 2 = X ) ) ) |
16 |
|
2z |
|- 2 e. ZZ |
17 |
|
zltp1le |
|- ( ( 2 e. ZZ /\ X e. ZZ ) -> ( 2 < X <-> ( 2 + 1 ) <_ X ) ) |
18 |
16 4 17
|
sylancr |
|- ( X e. NN -> ( 2 < X <-> ( 2 + 1 ) <_ X ) ) |
19 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
20 |
19
|
breq1i |
|- ( ( 2 + 1 ) <_ X <-> 3 <_ X ) |
21 |
18 20
|
bitrdi |
|- ( X e. NN -> ( 2 < X <-> 3 <_ X ) ) |
22 |
|
3re |
|- 3 e. RR |
23 |
|
leloe |
|- ( ( 3 e. RR /\ X e. RR ) -> ( 3 <_ X <-> ( 3 < X \/ 3 = X ) ) ) |
24 |
22 13 23
|
sylancr |
|- ( X e. NN -> ( 3 <_ X <-> ( 3 < X \/ 3 = X ) ) ) |
25 |
|
df-4 |
|- 4 = ( 3 + 1 ) |
26 |
|
3z |
|- 3 e. ZZ |
27 |
|
zltp1le |
|- ( ( 3 e. ZZ /\ X e. ZZ ) -> ( 3 < X <-> ( 3 + 1 ) <_ X ) ) |
28 |
26 4 27
|
sylancr |
|- ( X e. NN -> ( 3 < X <-> ( 3 + 1 ) <_ X ) ) |
29 |
28
|
biimpa |
|- ( ( X e. NN /\ 3 < X ) -> ( 3 + 1 ) <_ X ) |
30 |
25 29
|
eqbrtrid |
|- ( ( X e. NN /\ 3 < X ) -> 4 <_ X ) |
31 |
30
|
a1d |
|- ( ( X e. NN /\ 3 < X ) -> ( X e/ Prime -> 4 <_ X ) ) |
32 |
31
|
ex |
|- ( X e. NN -> ( 3 < X -> ( X e/ Prime -> 4 <_ X ) ) ) |
33 |
|
neleq1 |
|- ( X = 3 -> ( X e/ Prime <-> 3 e/ Prime ) ) |
34 |
33
|
eqcoms |
|- ( 3 = X -> ( X e/ Prime <-> 3 e/ Prime ) ) |
35 |
|
3prm |
|- 3 e. Prime |
36 |
|
elnelall |
|- ( 3 e. Prime -> ( 3 e/ Prime -> 4 <_ X ) ) |
37 |
35 36
|
mp1i |
|- ( 3 = X -> ( 3 e/ Prime -> 4 <_ X ) ) |
38 |
34 37
|
sylbid |
|- ( 3 = X -> ( X e/ Prime -> 4 <_ X ) ) |
39 |
38
|
a1i |
|- ( X e. NN -> ( 3 = X -> ( X e/ Prime -> 4 <_ X ) ) ) |
40 |
32 39
|
jaod |
|- ( X e. NN -> ( ( 3 < X \/ 3 = X ) -> ( X e/ Prime -> 4 <_ X ) ) ) |
41 |
24 40
|
sylbid |
|- ( X e. NN -> ( 3 <_ X -> ( X e/ Prime -> 4 <_ X ) ) ) |
42 |
21 41
|
sylbid |
|- ( X e. NN -> ( 2 < X -> ( X e/ Prime -> 4 <_ X ) ) ) |
43 |
|
neleq1 |
|- ( X = 2 -> ( X e/ Prime <-> 2 e/ Prime ) ) |
44 |
43
|
eqcoms |
|- ( 2 = X -> ( X e/ Prime <-> 2 e/ Prime ) ) |
45 |
|
2prm |
|- 2 e. Prime |
46 |
|
elnelall |
|- ( 2 e. Prime -> ( 2 e/ Prime -> 4 <_ X ) ) |
47 |
45 46
|
mp1i |
|- ( 2 = X -> ( 2 e/ Prime -> 4 <_ X ) ) |
48 |
44 47
|
sylbid |
|- ( 2 = X -> ( X e/ Prime -> 4 <_ X ) ) |
49 |
48
|
a1i |
|- ( X e. NN -> ( 2 = X -> ( X e/ Prime -> 4 <_ X ) ) ) |
50 |
42 49
|
jaod |
|- ( X e. NN -> ( ( 2 < X \/ 2 = X ) -> ( X e/ Prime -> 4 <_ X ) ) ) |
51 |
15 50
|
sylbid |
|- ( X e. NN -> ( 2 <_ X -> ( X e/ Prime -> 4 <_ X ) ) ) |
52 |
11 51
|
sylbid |
|- ( X e. NN -> ( 1 < X -> ( X e/ Prime -> 4 <_ X ) ) ) |
53 |
52
|
imp |
|- ( ( X e. NN /\ 1 < X ) -> ( X e/ Prime -> 4 <_ X ) ) |
54 |
53
|
imp |
|- ( ( ( X e. NN /\ 1 < X ) /\ X e/ Prime ) -> 4 <_ X ) |
55 |
3 5 54
|
3jca |
|- ( ( ( X e. NN /\ 1 < X ) /\ X e/ Prime ) -> ( 4 e. ZZ /\ X e. ZZ /\ 4 <_ X ) ) |
56 |
55
|
ex |
|- ( ( X e. NN /\ 1 < X ) -> ( X e/ Prime -> ( 4 e. ZZ /\ X e. ZZ /\ 4 <_ X ) ) ) |
57 |
|
eluz2 |
|- ( X e. ( ZZ>= ` 4 ) <-> ( 4 e. ZZ /\ X e. ZZ /\ 4 <_ X ) ) |
58 |
56 57
|
syl6ibr |
|- ( ( X e. NN /\ 1 < X ) -> ( X e/ Prime -> X e. ( ZZ>= ` 4 ) ) ) |
59 |
1 58
|
sylbi |
|- ( X e. ( ZZ>= ` 2 ) -> ( X e/ Prime -> X e. ( ZZ>= ` 4 ) ) ) |
60 |
59
|
imp |
|- ( ( X e. ( ZZ>= ` 2 ) /\ X e/ Prime ) -> X e. ( ZZ>= ` 4 ) ) |