Metamath Proof Explorer


Theorem gen21nv

Description: Virtual deduction form of alrimdh . (Contributed by Alan Sare, 31-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses gen21nv.1
|- ( ph -> A. x ph )
gen21nv.2
|- ( ps -> A. x ps )
gen21nv.3
|- (. ph ,. ps ->. ch ).
Assertion gen21nv
|- (. ph ,. ps ->. A. x ch ).

Proof

Step Hyp Ref Expression
1 gen21nv.1
 |-  ( ph -> A. x ph )
2 gen21nv.2
 |-  ( ps -> A. x ps )
3 gen21nv.3
 |-  (. ph ,. ps ->. ch ).
4 3 dfvd2i
 |-  ( ph -> ( ps -> ch ) )
5 1 2 4 alrimdh
 |-  ( ph -> ( ps -> A. x ch ) )
6 5 dfvd2ir
 |-  (. ph ,. ps ->. A. x ch ).