Metamath Proof Explorer


Theorem gen31

Description: Virtual deduction generalizing rule for one quantifying variable and three virtual hypothesis. gen31 is ggen31 with virtual deductions. (Contributed by Alan Sare, 22-Jun-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis gen31.1
|- (. ph ,. ps ,. ch ->. th ).
Assertion gen31
|- (. ph ,. ps ,. ch ->. A. x th ).

Proof

Step Hyp Ref Expression
1 gen31.1
 |-  (. ph ,. ps ,. ch ->. th ).
2 1 dfvd3i
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
3 2 ggen31
 |-  ( ph -> ( ps -> ( ch -> A. x th ) ) )
4 3 dfvd3ir
 |-  (. ph ,. ps ,. ch ->. A. x th ).