Metamath Proof Explorer


Theorem gencbval

Description: Change of bound variable using implicit substitution. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses gencbval.1
|- A e. _V
gencbval.2
|- ( A = y -> ( ph <-> ps ) )
gencbval.3
|- ( A = y -> ( ch <-> th ) )
gencbval.4
|- ( th <-> E. x ( ch /\ A = y ) )
Assertion gencbval
|- ( A. x ( ch -> ph ) <-> A. y ( th -> ps ) )

Proof

Step Hyp Ref Expression
1 gencbval.1
 |-  A e. _V
2 gencbval.2
 |-  ( A = y -> ( ph <-> ps ) )
3 gencbval.3
 |-  ( A = y -> ( ch <-> th ) )
4 gencbval.4
 |-  ( th <-> E. x ( ch /\ A = y ) )
5 2 notbid
 |-  ( A = y -> ( -. ph <-> -. ps ) )
6 1 5 3 4 gencbvex
 |-  ( E. x ( ch /\ -. ph ) <-> E. y ( th /\ -. ps ) )
7 exanali
 |-  ( E. x ( ch /\ -. ph ) <-> -. A. x ( ch -> ph ) )
8 exanali
 |-  ( E. y ( th /\ -. ps ) <-> -. A. y ( th -> ps ) )
9 6 7 8 3bitr3i
 |-  ( -. A. x ( ch -> ph ) <-> -. A. y ( th -> ps ) )
10 9 con4bii
 |-  ( A. x ( ch -> ph ) <-> A. y ( th -> ps ) )