| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gencbvex.1 |
|- A e. _V |
| 2 |
|
gencbvex.2 |
|- ( A = y -> ( ph <-> ps ) ) |
| 3 |
|
gencbvex.3 |
|- ( A = y -> ( ch <-> th ) ) |
| 4 |
|
gencbvex.4 |
|- ( th <-> E. x ( ch /\ A = y ) ) |
| 5 |
|
excom |
|- ( E. x E. y ( y = A /\ ( th /\ ps ) ) <-> E. y E. x ( y = A /\ ( th /\ ps ) ) ) |
| 6 |
3 2
|
anbi12d |
|- ( A = y -> ( ( ch /\ ph ) <-> ( th /\ ps ) ) ) |
| 7 |
6
|
bicomd |
|- ( A = y -> ( ( th /\ ps ) <-> ( ch /\ ph ) ) ) |
| 8 |
7
|
eqcoms |
|- ( y = A -> ( ( th /\ ps ) <-> ( ch /\ ph ) ) ) |
| 9 |
1 8
|
ceqsexv |
|- ( E. y ( y = A /\ ( th /\ ps ) ) <-> ( ch /\ ph ) ) |
| 10 |
9
|
exbii |
|- ( E. x E. y ( y = A /\ ( th /\ ps ) ) <-> E. x ( ch /\ ph ) ) |
| 11 |
|
19.41v |
|- ( E. x ( y = A /\ ( th /\ ps ) ) <-> ( E. x y = A /\ ( th /\ ps ) ) ) |
| 12 |
|
simpr |
|- ( ( E. x y = A /\ ( th /\ ps ) ) -> ( th /\ ps ) ) |
| 13 |
|
eqcom |
|- ( A = y <-> y = A ) |
| 14 |
13
|
biimpi |
|- ( A = y -> y = A ) |
| 15 |
14
|
adantl |
|- ( ( ch /\ A = y ) -> y = A ) |
| 16 |
15
|
eximi |
|- ( E. x ( ch /\ A = y ) -> E. x y = A ) |
| 17 |
4 16
|
sylbi |
|- ( th -> E. x y = A ) |
| 18 |
17
|
adantr |
|- ( ( th /\ ps ) -> E. x y = A ) |
| 19 |
18
|
ancri |
|- ( ( th /\ ps ) -> ( E. x y = A /\ ( th /\ ps ) ) ) |
| 20 |
12 19
|
impbii |
|- ( ( E. x y = A /\ ( th /\ ps ) ) <-> ( th /\ ps ) ) |
| 21 |
11 20
|
bitri |
|- ( E. x ( y = A /\ ( th /\ ps ) ) <-> ( th /\ ps ) ) |
| 22 |
21
|
exbii |
|- ( E. y E. x ( y = A /\ ( th /\ ps ) ) <-> E. y ( th /\ ps ) ) |
| 23 |
5 10 22
|
3bitr3i |
|- ( E. x ( ch /\ ph ) <-> E. y ( th /\ ps ) ) |