Metamath Proof Explorer


Theorem gencbvex2

Description: Restatement of gencbvex with weaker hypotheses. (Contributed by Jeff Hankins, 6-Dec-2006)

Ref Expression
Hypotheses gencbvex2.1
|- A e. _V
gencbvex2.2
|- ( A = y -> ( ph <-> ps ) )
gencbvex2.3
|- ( A = y -> ( ch <-> th ) )
gencbvex2.4
|- ( th -> E. x ( ch /\ A = y ) )
Assertion gencbvex2
|- ( E. x ( ch /\ ph ) <-> E. y ( th /\ ps ) )

Proof

Step Hyp Ref Expression
1 gencbvex2.1
 |-  A e. _V
2 gencbvex2.2
 |-  ( A = y -> ( ph <-> ps ) )
3 gencbvex2.3
 |-  ( A = y -> ( ch <-> th ) )
4 gencbvex2.4
 |-  ( th -> E. x ( ch /\ A = y ) )
5 3 biimpac
 |-  ( ( ch /\ A = y ) -> th )
6 5 exlimiv
 |-  ( E. x ( ch /\ A = y ) -> th )
7 4 6 impbii
 |-  ( th <-> E. x ( ch /\ A = y ) )
8 1 2 3 7 gencbvex
 |-  ( E. x ( ch /\ ph ) <-> E. y ( th /\ ps ) )