Metamath Proof Explorer


Theorem gencl

Description: Implicit substitution for class with embedded variable. (Contributed by NM, 17-May-1996)

Ref Expression
Hypotheses gencl.1
|- ( th <-> E. x ( ch /\ A = B ) )
gencl.2
|- ( A = B -> ( ph <-> ps ) )
gencl.3
|- ( ch -> ph )
Assertion gencl
|- ( th -> ps )

Proof

Step Hyp Ref Expression
1 gencl.1
 |-  ( th <-> E. x ( ch /\ A = B ) )
2 gencl.2
 |-  ( A = B -> ( ph <-> ps ) )
3 gencl.3
 |-  ( ch -> ph )
4 3 2 syl5ib
 |-  ( A = B -> ( ch -> ps ) )
5 4 impcom
 |-  ( ( ch /\ A = B ) -> ps )
6 5 exlimiv
 |-  ( E. x ( ch /\ A = B ) -> ps )
7 1 6 sylbi
 |-  ( th -> ps )