Step |
Hyp |
Ref |
Expression |
1 |
|
geo2lim.1 |
|- F = ( k e. NN |-> ( A / ( 2 ^ k ) ) ) |
2 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
3 |
|
1zzd |
|- ( A e. CC -> 1 e. ZZ ) |
4 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
5 |
4
|
a1i |
|- ( A e. CC -> ( 1 / 2 ) e. CC ) |
6 |
|
halfre |
|- ( 1 / 2 ) e. RR |
7 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
8 |
|
absid |
|- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
9 |
6 7 8
|
mp2an |
|- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
10 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
11 |
9 10
|
eqbrtri |
|- ( abs ` ( 1 / 2 ) ) < 1 |
12 |
11
|
a1i |
|- ( A e. CC -> ( abs ` ( 1 / 2 ) ) < 1 ) |
13 |
5 12
|
expcnv |
|- ( A e. CC -> ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ~~> 0 ) |
14 |
|
id |
|- ( A e. CC -> A e. CC ) |
15 |
|
nnex |
|- NN e. _V |
16 |
15
|
mptex |
|- ( k e. NN |-> ( A / ( 2 ^ k ) ) ) e. _V |
17 |
1 16
|
eqeltri |
|- F e. _V |
18 |
17
|
a1i |
|- ( A e. CC -> F e. _V ) |
19 |
|
nnnn0 |
|- ( j e. NN -> j e. NN0 ) |
20 |
19
|
adantl |
|- ( ( A e. CC /\ j e. NN ) -> j e. NN0 ) |
21 |
|
oveq2 |
|- ( k = j -> ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) ^ j ) ) |
22 |
|
eqid |
|- ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) = ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) |
23 |
|
ovex |
|- ( ( 1 / 2 ) ^ j ) e. _V |
24 |
21 22 23
|
fvmpt |
|- ( j e. NN0 -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) |
25 |
20 24
|
syl |
|- ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) |
26 |
|
2cn |
|- 2 e. CC |
27 |
|
2ne0 |
|- 2 =/= 0 |
28 |
|
nnz |
|- ( j e. NN -> j e. ZZ ) |
29 |
28
|
adantl |
|- ( ( A e. CC /\ j e. NN ) -> j e. ZZ ) |
30 |
|
exprec |
|- ( ( 2 e. CC /\ 2 =/= 0 /\ j e. ZZ ) -> ( ( 1 / 2 ) ^ j ) = ( 1 / ( 2 ^ j ) ) ) |
31 |
26 27 29 30
|
mp3an12i |
|- ( ( A e. CC /\ j e. NN ) -> ( ( 1 / 2 ) ^ j ) = ( 1 / ( 2 ^ j ) ) ) |
32 |
25 31
|
eqtrd |
|- ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( 1 / ( 2 ^ j ) ) ) |
33 |
|
2nn |
|- 2 e. NN |
34 |
|
nnexpcl |
|- ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) |
35 |
33 20 34
|
sylancr |
|- ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) e. NN ) |
36 |
35
|
nnrecred |
|- ( ( A e. CC /\ j e. NN ) -> ( 1 / ( 2 ^ j ) ) e. RR ) |
37 |
36
|
recnd |
|- ( ( A e. CC /\ j e. NN ) -> ( 1 / ( 2 ^ j ) ) e. CC ) |
38 |
32 37
|
eqeltrd |
|- ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) e. CC ) |
39 |
|
simpl |
|- ( ( A e. CC /\ j e. NN ) -> A e. CC ) |
40 |
35
|
nncnd |
|- ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) e. CC ) |
41 |
35
|
nnne0d |
|- ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) =/= 0 ) |
42 |
39 40 41
|
divrecd |
|- ( ( A e. CC /\ j e. NN ) -> ( A / ( 2 ^ j ) ) = ( A x. ( 1 / ( 2 ^ j ) ) ) ) |
43 |
|
oveq2 |
|- ( k = j -> ( 2 ^ k ) = ( 2 ^ j ) ) |
44 |
43
|
oveq2d |
|- ( k = j -> ( A / ( 2 ^ k ) ) = ( A / ( 2 ^ j ) ) ) |
45 |
|
ovex |
|- ( A / ( 2 ^ j ) ) e. _V |
46 |
44 1 45
|
fvmpt |
|- ( j e. NN -> ( F ` j ) = ( A / ( 2 ^ j ) ) ) |
47 |
46
|
adantl |
|- ( ( A e. CC /\ j e. NN ) -> ( F ` j ) = ( A / ( 2 ^ j ) ) ) |
48 |
32
|
oveq2d |
|- ( ( A e. CC /\ j e. NN ) -> ( A x. ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) ) = ( A x. ( 1 / ( 2 ^ j ) ) ) ) |
49 |
42 47 48
|
3eqtr4d |
|- ( ( A e. CC /\ j e. NN ) -> ( F ` j ) = ( A x. ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) ) ) |
50 |
2 3 13 14 18 38 49
|
climmulc2 |
|- ( A e. CC -> F ~~> ( A x. 0 ) ) |
51 |
|
mul01 |
|- ( A e. CC -> ( A x. 0 ) = 0 ) |
52 |
50 51
|
breqtrd |
|- ( A e. CC -> F ~~> 0 ) |
53 |
|
seqex |
|- seq 1 ( + , F ) e. _V |
54 |
53
|
a1i |
|- ( A e. CC -> seq 1 ( + , F ) e. _V ) |
55 |
39 40 41
|
divcld |
|- ( ( A e. CC /\ j e. NN ) -> ( A / ( 2 ^ j ) ) e. CC ) |
56 |
47 55
|
eqeltrd |
|- ( ( A e. CC /\ j e. NN ) -> ( F ` j ) e. CC ) |
57 |
47
|
oveq2d |
|- ( ( A e. CC /\ j e. NN ) -> ( A - ( F ` j ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) |
58 |
|
geo2sum |
|- ( ( j e. NN /\ A e. CC ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) |
59 |
58
|
ancoms |
|- ( ( A e. CC /\ j e. NN ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) |
60 |
|
elfznn |
|- ( n e. ( 1 ... j ) -> n e. NN ) |
61 |
60
|
adantl |
|- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. NN ) |
62 |
|
oveq2 |
|- ( k = n -> ( 2 ^ k ) = ( 2 ^ n ) ) |
63 |
62
|
oveq2d |
|- ( k = n -> ( A / ( 2 ^ k ) ) = ( A / ( 2 ^ n ) ) ) |
64 |
|
ovex |
|- ( A / ( 2 ^ n ) ) e. _V |
65 |
63 1 64
|
fvmpt |
|- ( n e. NN -> ( F ` n ) = ( A / ( 2 ^ n ) ) ) |
66 |
61 65
|
syl |
|- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( F ` n ) = ( A / ( 2 ^ n ) ) ) |
67 |
|
simpr |
|- ( ( A e. CC /\ j e. NN ) -> j e. NN ) |
68 |
67 2
|
eleqtrdi |
|- ( ( A e. CC /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) |
69 |
|
simpll |
|- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> A e. CC ) |
70 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
71 |
|
nnexpcl |
|- ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) |
72 |
33 70 71
|
sylancr |
|- ( n e. NN -> ( 2 ^ n ) e. NN ) |
73 |
61 72
|
syl |
|- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) e. NN ) |
74 |
73
|
nncnd |
|- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) e. CC ) |
75 |
73
|
nnne0d |
|- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) =/= 0 ) |
76 |
69 74 75
|
divcld |
|- ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( A / ( 2 ^ n ) ) e. CC ) |
77 |
66 68 76
|
fsumser |
|- ( ( A e. CC /\ j e. NN ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( seq 1 ( + , F ) ` j ) ) |
78 |
57 59 77
|
3eqtr2rd |
|- ( ( A e. CC /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) = ( A - ( F ` j ) ) ) |
79 |
2 3 52 14 54 56 78
|
climsubc2 |
|- ( A e. CC -> seq 1 ( + , F ) ~~> ( A - 0 ) ) |
80 |
|
subid1 |
|- ( A e. CC -> ( A - 0 ) = A ) |
81 |
79 80
|
breqtrd |
|- ( A e. CC -> seq 1 ( + , F ) ~~> A ) |