| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geo2lim.1 |  |-  F = ( k e. NN |-> ( A / ( 2 ^ k ) ) ) | 
						
							| 2 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 3 |  | 1zzd |  |-  ( A e. CC -> 1 e. ZZ ) | 
						
							| 4 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 5 | 4 | a1i |  |-  ( A e. CC -> ( 1 / 2 ) e. CC ) | 
						
							| 6 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 7 |  | halfge0 |  |-  0 <_ ( 1 / 2 ) | 
						
							| 8 |  | absid |  |-  ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) | 
						
							| 9 | 6 7 8 | mp2an |  |-  ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) | 
						
							| 10 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 11 | 9 10 | eqbrtri |  |-  ( abs ` ( 1 / 2 ) ) < 1 | 
						
							| 12 | 11 | a1i |  |-  ( A e. CC -> ( abs ` ( 1 / 2 ) ) < 1 ) | 
						
							| 13 | 5 12 | expcnv |  |-  ( A e. CC -> ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ~~> 0 ) | 
						
							| 14 |  | id |  |-  ( A e. CC -> A e. CC ) | 
						
							| 15 |  | nnex |  |-  NN e. _V | 
						
							| 16 | 15 | mptex |  |-  ( k e. NN |-> ( A / ( 2 ^ k ) ) ) e. _V | 
						
							| 17 | 1 16 | eqeltri |  |-  F e. _V | 
						
							| 18 | 17 | a1i |  |-  ( A e. CC -> F e. _V ) | 
						
							| 19 |  | nnnn0 |  |-  ( j e. NN -> j e. NN0 ) | 
						
							| 20 | 19 | adantl |  |-  ( ( A e. CC /\ j e. NN ) -> j e. NN0 ) | 
						
							| 21 |  | oveq2 |  |-  ( k = j -> ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) ^ j ) ) | 
						
							| 22 |  | eqid |  |-  ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) = ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) | 
						
							| 23 |  | ovex |  |-  ( ( 1 / 2 ) ^ j ) e. _V | 
						
							| 24 | 21 22 23 | fvmpt |  |-  ( j e. NN0 -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) | 
						
							| 25 | 20 24 | syl |  |-  ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( ( 1 / 2 ) ^ j ) ) | 
						
							| 26 |  | 2cn |  |-  2 e. CC | 
						
							| 27 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 28 |  | nnz |  |-  ( j e. NN -> j e. ZZ ) | 
						
							| 29 | 28 | adantl |  |-  ( ( A e. CC /\ j e. NN ) -> j e. ZZ ) | 
						
							| 30 |  | exprec |  |-  ( ( 2 e. CC /\ 2 =/= 0 /\ j e. ZZ ) -> ( ( 1 / 2 ) ^ j ) = ( 1 / ( 2 ^ j ) ) ) | 
						
							| 31 | 26 27 29 30 | mp3an12i |  |-  ( ( A e. CC /\ j e. NN ) -> ( ( 1 / 2 ) ^ j ) = ( 1 / ( 2 ^ j ) ) ) | 
						
							| 32 | 25 31 | eqtrd |  |-  ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) = ( 1 / ( 2 ^ j ) ) ) | 
						
							| 33 |  | 2nn |  |-  2 e. NN | 
						
							| 34 |  | nnexpcl |  |-  ( ( 2 e. NN /\ j e. NN0 ) -> ( 2 ^ j ) e. NN ) | 
						
							| 35 | 33 20 34 | sylancr |  |-  ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) e. NN ) | 
						
							| 36 | 35 | nnrecred |  |-  ( ( A e. CC /\ j e. NN ) -> ( 1 / ( 2 ^ j ) ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( A e. CC /\ j e. NN ) -> ( 1 / ( 2 ^ j ) ) e. CC ) | 
						
							| 38 | 32 37 | eqeltrd |  |-  ( ( A e. CC /\ j e. NN ) -> ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) e. CC ) | 
						
							| 39 |  | simpl |  |-  ( ( A e. CC /\ j e. NN ) -> A e. CC ) | 
						
							| 40 | 35 | nncnd |  |-  ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) e. CC ) | 
						
							| 41 | 35 | nnne0d |  |-  ( ( A e. CC /\ j e. NN ) -> ( 2 ^ j ) =/= 0 ) | 
						
							| 42 | 39 40 41 | divrecd |  |-  ( ( A e. CC /\ j e. NN ) -> ( A / ( 2 ^ j ) ) = ( A x. ( 1 / ( 2 ^ j ) ) ) ) | 
						
							| 43 |  | oveq2 |  |-  ( k = j -> ( 2 ^ k ) = ( 2 ^ j ) ) | 
						
							| 44 | 43 | oveq2d |  |-  ( k = j -> ( A / ( 2 ^ k ) ) = ( A / ( 2 ^ j ) ) ) | 
						
							| 45 |  | ovex |  |-  ( A / ( 2 ^ j ) ) e. _V | 
						
							| 46 | 44 1 45 | fvmpt |  |-  ( j e. NN -> ( F ` j ) = ( A / ( 2 ^ j ) ) ) | 
						
							| 47 | 46 | adantl |  |-  ( ( A e. CC /\ j e. NN ) -> ( F ` j ) = ( A / ( 2 ^ j ) ) ) | 
						
							| 48 | 32 | oveq2d |  |-  ( ( A e. CC /\ j e. NN ) -> ( A x. ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) ) = ( A x. ( 1 / ( 2 ^ j ) ) ) ) | 
						
							| 49 | 42 47 48 | 3eqtr4d |  |-  ( ( A e. CC /\ j e. NN ) -> ( F ` j ) = ( A x. ( ( k e. NN0 |-> ( ( 1 / 2 ) ^ k ) ) ` j ) ) ) | 
						
							| 50 | 2 3 13 14 18 38 49 | climmulc2 |  |-  ( A e. CC -> F ~~> ( A x. 0 ) ) | 
						
							| 51 |  | mul01 |  |-  ( A e. CC -> ( A x. 0 ) = 0 ) | 
						
							| 52 | 50 51 | breqtrd |  |-  ( A e. CC -> F ~~> 0 ) | 
						
							| 53 |  | seqex |  |-  seq 1 ( + , F ) e. _V | 
						
							| 54 | 53 | a1i |  |-  ( A e. CC -> seq 1 ( + , F ) e. _V ) | 
						
							| 55 | 39 40 41 | divcld |  |-  ( ( A e. CC /\ j e. NN ) -> ( A / ( 2 ^ j ) ) e. CC ) | 
						
							| 56 | 47 55 | eqeltrd |  |-  ( ( A e. CC /\ j e. NN ) -> ( F ` j ) e. CC ) | 
						
							| 57 | 47 | oveq2d |  |-  ( ( A e. CC /\ j e. NN ) -> ( A - ( F ` j ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) | 
						
							| 58 |  | geo2sum |  |-  ( ( j e. NN /\ A e. CC ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) | 
						
							| 59 | 58 | ancoms |  |-  ( ( A e. CC /\ j e. NN ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( A - ( A / ( 2 ^ j ) ) ) ) | 
						
							| 60 |  | elfznn |  |-  ( n e. ( 1 ... j ) -> n e. NN ) | 
						
							| 61 | 60 | adantl |  |-  ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> n e. NN ) | 
						
							| 62 |  | oveq2 |  |-  ( k = n -> ( 2 ^ k ) = ( 2 ^ n ) ) | 
						
							| 63 | 62 | oveq2d |  |-  ( k = n -> ( A / ( 2 ^ k ) ) = ( A / ( 2 ^ n ) ) ) | 
						
							| 64 |  | ovex |  |-  ( A / ( 2 ^ n ) ) e. _V | 
						
							| 65 | 63 1 64 | fvmpt |  |-  ( n e. NN -> ( F ` n ) = ( A / ( 2 ^ n ) ) ) | 
						
							| 66 | 61 65 | syl |  |-  ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( F ` n ) = ( A / ( 2 ^ n ) ) ) | 
						
							| 67 |  | simpr |  |-  ( ( A e. CC /\ j e. NN ) -> j e. NN ) | 
						
							| 68 | 67 2 | eleqtrdi |  |-  ( ( A e. CC /\ j e. NN ) -> j e. ( ZZ>= ` 1 ) ) | 
						
							| 69 |  | simpll |  |-  ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> A e. CC ) | 
						
							| 70 |  | nnnn0 |  |-  ( n e. NN -> n e. NN0 ) | 
						
							| 71 |  | nnexpcl |  |-  ( ( 2 e. NN /\ n e. NN0 ) -> ( 2 ^ n ) e. NN ) | 
						
							| 72 | 33 70 71 | sylancr |  |-  ( n e. NN -> ( 2 ^ n ) e. NN ) | 
						
							| 73 | 61 72 | syl |  |-  ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) e. NN ) | 
						
							| 74 | 73 | nncnd |  |-  ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) e. CC ) | 
						
							| 75 | 73 | nnne0d |  |-  ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( 2 ^ n ) =/= 0 ) | 
						
							| 76 | 69 74 75 | divcld |  |-  ( ( ( A e. CC /\ j e. NN ) /\ n e. ( 1 ... j ) ) -> ( A / ( 2 ^ n ) ) e. CC ) | 
						
							| 77 | 66 68 76 | fsumser |  |-  ( ( A e. CC /\ j e. NN ) -> sum_ n e. ( 1 ... j ) ( A / ( 2 ^ n ) ) = ( seq 1 ( + , F ) ` j ) ) | 
						
							| 78 | 57 59 77 | 3eqtr2rd |  |-  ( ( A e. CC /\ j e. NN ) -> ( seq 1 ( + , F ) ` j ) = ( A - ( F ` j ) ) ) | 
						
							| 79 | 2 3 52 14 54 56 78 | climsubc2 |  |-  ( A e. CC -> seq 1 ( + , F ) ~~> ( A - 0 ) ) | 
						
							| 80 |  | subid1 |  |-  ( A e. CC -> ( A - 0 ) = A ) | 
						
							| 81 | 79 80 | breqtrd |  |-  ( A e. CC -> seq 1 ( + , F ) ~~> A ) |