| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1zzd |  |-  ( ( N e. NN /\ A e. CC ) -> 1 e. ZZ ) | 
						
							| 2 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 3 | 2 | adantr |  |-  ( ( N e. NN /\ A e. CC ) -> N e. ZZ ) | 
						
							| 4 |  | simplr |  |-  ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> A e. CC ) | 
						
							| 5 |  | 2nn |  |-  2 e. NN | 
						
							| 6 |  | elfznn |  |-  ( k e. ( 1 ... N ) -> k e. NN ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> k e. NN ) | 
						
							| 8 | 7 | nnnn0d |  |-  ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> k e. NN0 ) | 
						
							| 9 |  | nnexpcl |  |-  ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) | 
						
							| 10 | 5 8 9 | sylancr |  |-  ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> ( 2 ^ k ) e. NN ) | 
						
							| 11 | 10 | nncnd |  |-  ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> ( 2 ^ k ) e. CC ) | 
						
							| 12 | 10 | nnne0d |  |-  ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> ( 2 ^ k ) =/= 0 ) | 
						
							| 13 | 4 11 12 | divcld |  |-  ( ( ( N e. NN /\ A e. CC ) /\ k e. ( 1 ... N ) ) -> ( A / ( 2 ^ k ) ) e. CC ) | 
						
							| 14 |  | oveq2 |  |-  ( k = ( j + 1 ) -> ( 2 ^ k ) = ( 2 ^ ( j + 1 ) ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( k = ( j + 1 ) -> ( A / ( 2 ^ k ) ) = ( A / ( 2 ^ ( j + 1 ) ) ) ) | 
						
							| 16 | 1 1 3 13 15 | fsumshftm |  |-  ( ( N e. NN /\ A e. CC ) -> sum_ k e. ( 1 ... N ) ( A / ( 2 ^ k ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) ) | 
						
							| 17 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 18 | 17 | oveq1i |  |-  ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) | 
						
							| 19 | 18 | sumeq1i |  |-  sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) | 
						
							| 20 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 21 |  | elfznn0 |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. NN0 ) | 
						
							| 23 |  | expcl |  |-  ( ( ( 1 / 2 ) e. CC /\ j e. NN0 ) -> ( ( 1 / 2 ) ^ j ) e. CC ) | 
						
							| 24 | 20 22 23 | sylancr |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 / 2 ) ^ j ) e. CC ) | 
						
							| 25 |  | 2cnd |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> 2 e. CC ) | 
						
							| 26 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 27 | 26 | a1i |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> 2 =/= 0 ) | 
						
							| 28 | 24 25 27 | divrecd |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1 / 2 ) ^ j ) / 2 ) = ( ( ( 1 / 2 ) ^ j ) x. ( 1 / 2 ) ) ) | 
						
							| 29 |  | expp1 |  |-  ( ( ( 1 / 2 ) e. CC /\ j e. NN0 ) -> ( ( 1 / 2 ) ^ ( j + 1 ) ) = ( ( ( 1 / 2 ) ^ j ) x. ( 1 / 2 ) ) ) | 
						
							| 30 | 20 22 29 | sylancr |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 / 2 ) ^ ( j + 1 ) ) = ( ( ( 1 / 2 ) ^ j ) x. ( 1 / 2 ) ) ) | 
						
							| 31 |  | elfzelz |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> j e. ZZ ) | 
						
							| 32 | 31 | peano2zd |  |-  ( j e. ( 0 ... ( N - 1 ) ) -> ( j + 1 ) e. ZZ ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) e. ZZ ) | 
						
							| 34 | 25 27 33 | exprecd |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( 1 / 2 ) ^ ( j + 1 ) ) = ( 1 / ( 2 ^ ( j + 1 ) ) ) ) | 
						
							| 35 | 28 30 34 | 3eqtr2rd |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( 1 / ( 2 ^ ( j + 1 ) ) ) = ( ( ( 1 / 2 ) ^ j ) / 2 ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( A x. ( 1 / ( 2 ^ ( j + 1 ) ) ) ) = ( A x. ( ( ( 1 / 2 ) ^ j ) / 2 ) ) ) | 
						
							| 37 |  | simplr |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> A e. CC ) | 
						
							| 38 |  | peano2nn0 |  |-  ( j e. NN0 -> ( j + 1 ) e. NN0 ) | 
						
							| 39 | 22 38 | syl |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) e. NN0 ) | 
						
							| 40 |  | nnexpcl |  |-  ( ( 2 e. NN /\ ( j + 1 ) e. NN0 ) -> ( 2 ^ ( j + 1 ) ) e. NN ) | 
						
							| 41 | 5 39 40 | sylancr |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) e. NN ) | 
						
							| 42 | 41 | nncnd |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) e. CC ) | 
						
							| 43 | 41 | nnne0d |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( 2 ^ ( j + 1 ) ) =/= 0 ) | 
						
							| 44 | 37 42 43 | divrecd |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( A / ( 2 ^ ( j + 1 ) ) ) = ( A x. ( 1 / ( 2 ^ ( j + 1 ) ) ) ) ) | 
						
							| 45 | 24 37 25 27 | div12d |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) = ( A x. ( ( ( 1 / 2 ) ^ j ) / 2 ) ) ) | 
						
							| 46 | 36 44 45 | 3eqtr4d |  |-  ( ( ( N e. NN /\ A e. CC ) /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( A / ( 2 ^ ( j + 1 ) ) ) = ( ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) | 
						
							| 47 | 46 | sumeq2dv |  |-  ( ( N e. NN /\ A e. CC ) -> sum_ j e. ( 0 ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) | 
						
							| 48 |  | fzfid |  |-  ( ( N e. NN /\ A e. CC ) -> ( 0 ... ( N - 1 ) ) e. Fin ) | 
						
							| 49 |  | halfcl |  |-  ( A e. CC -> ( A / 2 ) e. CC ) | 
						
							| 50 | 49 | adantl |  |-  ( ( N e. NN /\ A e. CC ) -> ( A / 2 ) e. CC ) | 
						
							| 51 | 48 50 24 | fsummulc1 |  |-  ( ( N e. NN /\ A e. CC ) -> ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) | 
						
							| 52 | 47 51 | eqtr4d |  |-  ( ( N e. NN /\ A e. CC ) -> sum_ j e. ( 0 ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) = ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) | 
						
							| 53 | 19 52 | eqtrid |  |-  ( ( N e. NN /\ A e. CC ) -> sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( A / ( 2 ^ ( j + 1 ) ) ) = ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) ) | 
						
							| 54 |  | 2cnd |  |-  ( ( N e. NN /\ A e. CC ) -> 2 e. CC ) | 
						
							| 55 | 26 | a1i |  |-  ( ( N e. NN /\ A e. CC ) -> 2 =/= 0 ) | 
						
							| 56 | 54 55 3 | exprecd |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( 1 / 2 ) ^ N ) = ( 1 / ( 2 ^ N ) ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 - ( ( 1 / 2 ) ^ N ) ) = ( 1 - ( 1 / ( 2 ^ N ) ) ) ) | 
						
							| 58 |  | 1mhlfehlf |  |-  ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) | 
						
							| 59 | 58 | a1i |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) ) | 
						
							| 60 | 57 59 | oveq12d |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) = ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) ) | 
						
							| 61 |  | simpr |  |-  ( ( N e. NN /\ A e. CC ) -> A e. CC ) | 
						
							| 62 | 61 54 55 | divrec2d |  |-  ( ( N e. NN /\ A e. CC ) -> ( A / 2 ) = ( ( 1 / 2 ) x. A ) ) | 
						
							| 63 | 60 62 | oveq12d |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) x. ( A / 2 ) ) = ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( ( 1 / 2 ) x. A ) ) ) | 
						
							| 64 |  | ax-1cn |  |-  1 e. CC | 
						
							| 65 |  | nnnn0 |  |-  ( N e. NN -> N e. NN0 ) | 
						
							| 66 | 65 | adantr |  |-  ( ( N e. NN /\ A e. CC ) -> N e. NN0 ) | 
						
							| 67 |  | nnexpcl |  |-  ( ( 2 e. NN /\ N e. NN0 ) -> ( 2 ^ N ) e. NN ) | 
						
							| 68 | 5 66 67 | sylancr |  |-  ( ( N e. NN /\ A e. CC ) -> ( 2 ^ N ) e. NN ) | 
						
							| 69 | 68 | nnrecred |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 / ( 2 ^ N ) ) e. RR ) | 
						
							| 70 | 69 | recnd |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 / ( 2 ^ N ) ) e. CC ) | 
						
							| 71 |  | subcl |  |-  ( ( 1 e. CC /\ ( 1 / ( 2 ^ N ) ) e. CC ) -> ( 1 - ( 1 / ( 2 ^ N ) ) ) e. CC ) | 
						
							| 72 | 64 70 71 | sylancr |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 - ( 1 / ( 2 ^ N ) ) ) e. CC ) | 
						
							| 73 | 20 | a1i |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 / 2 ) e. CC ) | 
						
							| 74 |  | 0re |  |-  0 e. RR | 
						
							| 75 |  | halfgt0 |  |-  0 < ( 1 / 2 ) | 
						
							| 76 | 74 75 | gtneii |  |-  ( 1 / 2 ) =/= 0 | 
						
							| 77 | 76 | a1i |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 / 2 ) =/= 0 ) | 
						
							| 78 | 72 73 77 | divcld |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) e. CC ) | 
						
							| 79 | 78 73 61 | mulassd |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( 1 / 2 ) ) x. A ) = ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( ( 1 / 2 ) x. A ) ) ) | 
						
							| 80 | 72 73 77 | divcan1d |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( 1 / 2 ) ) = ( 1 - ( 1 / ( 2 ^ N ) ) ) ) | 
						
							| 81 | 80 | oveq1d |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( ( ( 1 - ( 1 / ( 2 ^ N ) ) ) / ( 1 / 2 ) ) x. ( 1 / 2 ) ) x. A ) = ( ( 1 - ( 1 / ( 2 ^ N ) ) ) x. A ) ) | 
						
							| 82 | 63 79 81 | 3eqtr2d |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) x. ( A / 2 ) ) = ( ( 1 - ( 1 / ( 2 ^ N ) ) ) x. A ) ) | 
						
							| 83 |  | halfre |  |-  ( 1 / 2 ) e. RR | 
						
							| 84 |  | halflt1 |  |-  ( 1 / 2 ) < 1 | 
						
							| 85 | 83 84 | ltneii |  |-  ( 1 / 2 ) =/= 1 | 
						
							| 86 | 85 | a1i |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 / 2 ) =/= 1 ) | 
						
							| 87 | 73 86 66 | geoser |  |-  ( ( N e. NN /\ A e. CC ) -> sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) = ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) ) | 
						
							| 88 | 87 | oveq1d |  |-  ( ( N e. NN /\ A e. CC ) -> ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) = ( ( ( 1 - ( ( 1 / 2 ) ^ N ) ) / ( 1 - ( 1 / 2 ) ) ) x. ( A / 2 ) ) ) | 
						
							| 89 |  | mullid |  |-  ( A e. CC -> ( 1 x. A ) = A ) | 
						
							| 90 | 89 | adantl |  |-  ( ( N e. NN /\ A e. CC ) -> ( 1 x. A ) = A ) | 
						
							| 91 | 90 | eqcomd |  |-  ( ( N e. NN /\ A e. CC ) -> A = ( 1 x. A ) ) | 
						
							| 92 | 68 | nncnd |  |-  ( ( N e. NN /\ A e. CC ) -> ( 2 ^ N ) e. CC ) | 
						
							| 93 | 68 | nnne0d |  |-  ( ( N e. NN /\ A e. CC ) -> ( 2 ^ N ) =/= 0 ) | 
						
							| 94 | 61 92 93 | divrec2d |  |-  ( ( N e. NN /\ A e. CC ) -> ( A / ( 2 ^ N ) ) = ( ( 1 / ( 2 ^ N ) ) x. A ) ) | 
						
							| 95 | 91 94 | oveq12d |  |-  ( ( N e. NN /\ A e. CC ) -> ( A - ( A / ( 2 ^ N ) ) ) = ( ( 1 x. A ) - ( ( 1 / ( 2 ^ N ) ) x. A ) ) ) | 
						
							| 96 | 64 | a1i |  |-  ( ( N e. NN /\ A e. CC ) -> 1 e. CC ) | 
						
							| 97 | 96 70 61 | subdird |  |-  ( ( N e. NN /\ A e. CC ) -> ( ( 1 - ( 1 / ( 2 ^ N ) ) ) x. A ) = ( ( 1 x. A ) - ( ( 1 / ( 2 ^ N ) ) x. A ) ) ) | 
						
							| 98 | 95 97 | eqtr4d |  |-  ( ( N e. NN /\ A e. CC ) -> ( A - ( A / ( 2 ^ N ) ) ) = ( ( 1 - ( 1 / ( 2 ^ N ) ) ) x. A ) ) | 
						
							| 99 | 82 88 98 | 3eqtr4d |  |-  ( ( N e. NN /\ A e. CC ) -> ( sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 / 2 ) ^ j ) x. ( A / 2 ) ) = ( A - ( A / ( 2 ^ N ) ) ) ) | 
						
							| 100 | 16 53 99 | 3eqtrd |  |-  ( ( N e. NN /\ A e. CC ) -> sum_ k e. ( 1 ... N ) ( A / ( 2 ^ k ) ) = ( A - ( A / ( 2 ^ N ) ) ) ) |