| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0z |  |-  ( N e. NN0 -> N e. ZZ ) | 
						
							| 2 |  | fzoval |  |-  ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( N e. NN0 -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) | 
						
							| 4 | 3 | sumeq1d |  |-  ( N e. NN0 -> sum_ k e. ( 0 ..^ N ) ( 2 ^ k ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( 2 ^ k ) ) | 
						
							| 5 |  | 2cn |  |-  2 e. CC | 
						
							| 6 | 5 | a1i |  |-  ( N e. NN0 -> 2 e. CC ) | 
						
							| 7 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 8 | 7 | necomi |  |-  2 =/= 1 | 
						
							| 9 | 8 | a1i |  |-  ( N e. NN0 -> 2 =/= 1 ) | 
						
							| 10 |  | id |  |-  ( N e. NN0 -> N e. NN0 ) | 
						
							| 11 | 6 9 10 | geoser |  |-  ( N e. NN0 -> sum_ k e. ( 0 ... ( N - 1 ) ) ( 2 ^ k ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) | 
						
							| 12 | 6 10 | expcld |  |-  ( N e. NN0 -> ( 2 ^ N ) e. CC ) | 
						
							| 13 |  | ax-1cn |  |-  1 e. CC | 
						
							| 14 | 13 | a1i |  |-  ( N e. NN0 -> 1 e. CC ) | 
						
							| 15 | 12 14 | subcld |  |-  ( N e. NN0 -> ( ( 2 ^ N ) - 1 ) e. CC ) | 
						
							| 16 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 17 | 16 | a1i |  |-  ( N e. NN0 -> 1 =/= 0 ) | 
						
							| 18 | 15 14 17 | div2negd |  |-  ( N e. NN0 -> ( -u ( ( 2 ^ N ) - 1 ) / -u 1 ) = ( ( ( 2 ^ N ) - 1 ) / 1 ) ) | 
						
							| 19 | 12 14 | negsubdi2d |  |-  ( N e. NN0 -> -u ( ( 2 ^ N ) - 1 ) = ( 1 - ( 2 ^ N ) ) ) | 
						
							| 20 |  | 2m1e1 |  |-  ( 2 - 1 ) = 1 | 
						
							| 21 | 20 | negeqi |  |-  -u ( 2 - 1 ) = -u 1 | 
						
							| 22 | 5 13 | negsubdi2i |  |-  -u ( 2 - 1 ) = ( 1 - 2 ) | 
						
							| 23 | 21 22 | eqtr3i |  |-  -u 1 = ( 1 - 2 ) | 
						
							| 24 | 23 | a1i |  |-  ( N e. NN0 -> -u 1 = ( 1 - 2 ) ) | 
						
							| 25 | 19 24 | oveq12d |  |-  ( N e. NN0 -> ( -u ( ( 2 ^ N ) - 1 ) / -u 1 ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) | 
						
							| 26 | 15 | div1d |  |-  ( N e. NN0 -> ( ( ( 2 ^ N ) - 1 ) / 1 ) = ( ( 2 ^ N ) - 1 ) ) | 
						
							| 27 | 18 25 26 | 3eqtr3d |  |-  ( N e. NN0 -> ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) = ( ( 2 ^ N ) - 1 ) ) | 
						
							| 28 | 4 11 27 | 3eqtrd |  |-  ( N e. NN0 -> sum_ k e. ( 0 ..^ N ) ( 2 ^ k ) = ( ( 2 ^ N ) - 1 ) ) |