Step |
Hyp |
Ref |
Expression |
1 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
2 |
|
fzoval |
|- ( N e. ZZ -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
3 |
1 2
|
syl |
|- ( N e. NN0 -> ( 0 ..^ N ) = ( 0 ... ( N - 1 ) ) ) |
4 |
3
|
sumeq1d |
|- ( N e. NN0 -> sum_ k e. ( 0 ..^ N ) ( 2 ^ k ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( 2 ^ k ) ) |
5 |
|
2cn |
|- 2 e. CC |
6 |
5
|
a1i |
|- ( N e. NN0 -> 2 e. CC ) |
7 |
|
1ne2 |
|- 1 =/= 2 |
8 |
7
|
necomi |
|- 2 =/= 1 |
9 |
8
|
a1i |
|- ( N e. NN0 -> 2 =/= 1 ) |
10 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
11 |
6 9 10
|
geoser |
|- ( N e. NN0 -> sum_ k e. ( 0 ... ( N - 1 ) ) ( 2 ^ k ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) |
12 |
6 10
|
expcld |
|- ( N e. NN0 -> ( 2 ^ N ) e. CC ) |
13 |
|
ax-1cn |
|- 1 e. CC |
14 |
13
|
a1i |
|- ( N e. NN0 -> 1 e. CC ) |
15 |
12 14
|
subcld |
|- ( N e. NN0 -> ( ( 2 ^ N ) - 1 ) e. CC ) |
16 |
|
ax-1ne0 |
|- 1 =/= 0 |
17 |
16
|
a1i |
|- ( N e. NN0 -> 1 =/= 0 ) |
18 |
15 14 17
|
div2negd |
|- ( N e. NN0 -> ( -u ( ( 2 ^ N ) - 1 ) / -u 1 ) = ( ( ( 2 ^ N ) - 1 ) / 1 ) ) |
19 |
12 14
|
negsubdi2d |
|- ( N e. NN0 -> -u ( ( 2 ^ N ) - 1 ) = ( 1 - ( 2 ^ N ) ) ) |
20 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
21 |
20
|
negeqi |
|- -u ( 2 - 1 ) = -u 1 |
22 |
5 13
|
negsubdi2i |
|- -u ( 2 - 1 ) = ( 1 - 2 ) |
23 |
21 22
|
eqtr3i |
|- -u 1 = ( 1 - 2 ) |
24 |
23
|
a1i |
|- ( N e. NN0 -> -u 1 = ( 1 - 2 ) ) |
25 |
19 24
|
oveq12d |
|- ( N e. NN0 -> ( -u ( ( 2 ^ N ) - 1 ) / -u 1 ) = ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) ) |
26 |
15
|
div1d |
|- ( N e. NN0 -> ( ( ( 2 ^ N ) - 1 ) / 1 ) = ( ( 2 ^ N ) - 1 ) ) |
27 |
18 25 26
|
3eqtr3d |
|- ( N e. NN0 -> ( ( 1 - ( 2 ^ N ) ) / ( 1 - 2 ) ) = ( ( 2 ^ N ) - 1 ) ) |
28 |
4 11 27
|
3eqtrd |
|- ( N e. NN0 -> sum_ k e. ( 0 ..^ N ) ( 2 ^ k ) = ( ( 2 ^ N ) - 1 ) ) |