Step |
Hyp |
Ref |
Expression |
1 |
|
2cn |
|- 2 e. CC |
2 |
1
|
a1i |
|- ( k e. NN -> 2 e. CC ) |
3 |
|
2ne0 |
|- 2 =/= 0 |
4 |
3
|
a1i |
|- ( k e. NN -> 2 =/= 0 ) |
5 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
6 |
2 4 5
|
exprecd |
|- ( k e. NN -> ( ( 1 / 2 ) ^ k ) = ( 1 / ( 2 ^ k ) ) ) |
7 |
6
|
sumeq2i |
|- sum_ k e. NN ( ( 1 / 2 ) ^ k ) = sum_ k e. NN ( 1 / ( 2 ^ k ) ) |
8 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
9 |
|
halfre |
|- ( 1 / 2 ) e. RR |
10 |
|
halfge0 |
|- 0 <_ ( 1 / 2 ) |
11 |
|
absid |
|- ( ( ( 1 / 2 ) e. RR /\ 0 <_ ( 1 / 2 ) ) -> ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) ) |
12 |
9 10 11
|
mp2an |
|- ( abs ` ( 1 / 2 ) ) = ( 1 / 2 ) |
13 |
|
halflt1 |
|- ( 1 / 2 ) < 1 |
14 |
12 13
|
eqbrtri |
|- ( abs ` ( 1 / 2 ) ) < 1 |
15 |
|
geoisum1 |
|- ( ( ( 1 / 2 ) e. CC /\ ( abs ` ( 1 / 2 ) ) < 1 ) -> sum_ k e. NN ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) ) |
16 |
8 14 15
|
mp2an |
|- sum_ k e. NN ( ( 1 / 2 ) ^ k ) = ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) |
17 |
|
1mhlfehlf |
|- ( 1 - ( 1 / 2 ) ) = ( 1 / 2 ) |
18 |
17
|
oveq2i |
|- ( ( 1 / 2 ) / ( 1 - ( 1 / 2 ) ) ) = ( ( 1 / 2 ) / ( 1 / 2 ) ) |
19 |
|
ax-1cn |
|- 1 e. CC |
20 |
|
ax-1ne0 |
|- 1 =/= 0 |
21 |
19 1 20 3
|
divne0i |
|- ( 1 / 2 ) =/= 0 |
22 |
8 21
|
dividi |
|- ( ( 1 / 2 ) / ( 1 / 2 ) ) = 1 |
23 |
16 18 22
|
3eqtri |
|- sum_ k e. NN ( ( 1 / 2 ) ^ k ) = 1 |
24 |
7 23
|
eqtr3i |
|- sum_ k e. NN ( 1 / ( 2 ^ k ) ) = 1 |