| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 2 |  | 0zd |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 0 e. ZZ ) | 
						
							| 3 |  | oveq2 |  |-  ( n = k -> ( A ^ n ) = ( A ^ k ) ) | 
						
							| 4 |  | eqid |  |-  ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) | 
						
							| 5 |  | ovex |  |-  ( A ^ k ) e. _V | 
						
							| 6 | 3 4 5 | fvmpt |  |-  ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) | 
						
							| 8 |  | expcl |  |-  ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) | 
						
							| 9 | 8 | adantlr |  |-  ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN0 ) -> ( A ^ k ) e. CC ) | 
						
							| 10 |  | simpl |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) | 
						
							| 11 |  | simpr |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) | 
						
							| 12 | 10 11 7 | geolim |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) | 
						
							| 13 | 1 2 7 9 12 | isumclim |  |-  ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |