| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 2 |
|
1zzd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. ZZ ) |
| 3 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
| 4 |
|
eqid |
|- ( n e. NN |-> ( A ^ n ) ) = ( n e. NN |-> ( A ^ n ) ) |
| 5 |
|
ovex |
|- ( A ^ k ) e. _V |
| 6 |
3 4 5
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 7 |
6
|
adantl |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 8 |
|
simpl |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> A e. CC ) |
| 9 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
| 10 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 11 |
8 9 10
|
syl2an |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. NN ) -> ( A ^ k ) e. CC ) |
| 12 |
|
simpr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( abs ` A ) < 1 ) |
| 13 |
|
1nn0 |
|- 1 e. NN0 |
| 14 |
13
|
a1i |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> 1 e. NN0 ) |
| 15 |
|
elnnuz |
|- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
| 16 |
15 7
|
sylan2br |
|- ( ( ( A e. CC /\ ( abs ` A ) < 1 ) /\ k e. ( ZZ>= ` 1 ) ) -> ( ( n e. NN |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 17 |
8 12 14 16
|
geolim2 |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( A ^ n ) ) ) ~~> ( ( A ^ 1 ) / ( 1 - A ) ) ) |
| 18 |
1 2 7 11 17
|
isumclim |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN ( A ^ k ) = ( ( A ^ 1 ) / ( 1 - A ) ) ) |
| 19 |
|
exp1 |
|- ( A e. CC -> ( A ^ 1 ) = A ) |
| 20 |
19
|
adantr |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( A ^ 1 ) = A ) |
| 21 |
20
|
oveq1d |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> ( ( A ^ 1 ) / ( 1 - A ) ) = ( A / ( 1 - A ) ) ) |
| 22 |
18 21
|
eqtrd |
|- ( ( A e. CC /\ ( abs ` A ) < 1 ) -> sum_ k e. NN ( A ^ k ) = ( A / ( 1 - A ) ) ) |