| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> A e. CC ) | 
						
							| 2 |  | simp2 |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> R e. CC ) | 
						
							| 3 |  | ax-1cn |  |-  1 e. CC | 
						
							| 4 |  | subcl |  |-  ( ( 1 e. CC /\ R e. CC ) -> ( 1 - R ) e. CC ) | 
						
							| 5 | 3 2 4 | sylancr |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( 1 - R ) e. CC ) | 
						
							| 6 |  | simp3 |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( abs ` R ) < 1 ) | 
						
							| 7 |  | 1re |  |-  1 e. RR | 
						
							| 8 | 7 | ltnri |  |-  -. 1 < 1 | 
						
							| 9 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 10 |  | fveq2 |  |-  ( 1 = R -> ( abs ` 1 ) = ( abs ` R ) ) | 
						
							| 11 | 9 10 | eqtr3id |  |-  ( 1 = R -> 1 = ( abs ` R ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( 1 = R -> ( 1 < 1 <-> ( abs ` R ) < 1 ) ) | 
						
							| 13 | 8 12 | mtbii |  |-  ( 1 = R -> -. ( abs ` R ) < 1 ) | 
						
							| 14 | 13 | necon2ai |  |-  ( ( abs ` R ) < 1 -> 1 =/= R ) | 
						
							| 15 | 6 14 | syl |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 =/= R ) | 
						
							| 16 |  | subeq0 |  |-  ( ( 1 e. CC /\ R e. CC ) -> ( ( 1 - R ) = 0 <-> 1 = R ) ) | 
						
							| 17 | 16 | necon3bid |  |-  ( ( 1 e. CC /\ R e. CC ) -> ( ( 1 - R ) =/= 0 <-> 1 =/= R ) ) | 
						
							| 18 | 3 2 17 | sylancr |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( ( 1 - R ) =/= 0 <-> 1 =/= R ) ) | 
						
							| 19 | 15 18 | mpbird |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( 1 - R ) =/= 0 ) | 
						
							| 20 | 1 2 5 19 | divassd |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( ( A x. R ) / ( 1 - R ) ) = ( A x. ( R / ( 1 - R ) ) ) ) | 
						
							| 21 |  | geoisum1 |  |-  ( ( R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( R ^ k ) = ( R / ( 1 - R ) ) ) | 
						
							| 22 | 21 | 3adant1 |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( R ^ k ) = ( R / ( 1 - R ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( A x. sum_ k e. NN ( R ^ k ) ) = ( A x. ( R / ( 1 - R ) ) ) ) | 
						
							| 24 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 25 |  | 1zzd |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 e. ZZ ) | 
						
							| 26 |  | oveq2 |  |-  ( n = k -> ( R ^ n ) = ( R ^ k ) ) | 
						
							| 27 |  | eqid |  |-  ( n e. NN |-> ( R ^ n ) ) = ( n e. NN |-> ( R ^ n ) ) | 
						
							| 28 |  | ovex |  |-  ( R ^ k ) e. _V | 
						
							| 29 | 26 27 28 | fvmpt |  |-  ( k e. NN -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) | 
						
							| 30 | 29 | adantl |  |-  ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. NN ) -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) | 
						
							| 31 |  | nnnn0 |  |-  ( k e. NN -> k e. NN0 ) | 
						
							| 32 |  | expcl |  |-  ( ( R e. CC /\ k e. NN0 ) -> ( R ^ k ) e. CC ) | 
						
							| 33 | 2 31 32 | syl2an |  |-  ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. NN ) -> ( R ^ k ) e. CC ) | 
						
							| 34 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 35 | 34 | a1i |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> 1 e. NN0 ) | 
						
							| 36 |  | elnnuz |  |-  ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) | 
						
							| 37 | 36 30 | sylan2br |  |-  ( ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) /\ k e. ( ZZ>= ` 1 ) ) -> ( ( n e. NN |-> ( R ^ n ) ) ` k ) = ( R ^ k ) ) | 
						
							| 38 | 2 6 35 37 | geolim2 |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) ~~> ( ( R ^ 1 ) / ( 1 - R ) ) ) | 
						
							| 39 |  | seqex |  |-  seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. _V | 
						
							| 40 |  | ovex |  |-  ( ( R ^ 1 ) / ( 1 - R ) ) e. _V | 
						
							| 41 | 39 40 | breldm |  |-  ( seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) ~~> ( ( R ^ 1 ) / ( 1 - R ) ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. dom ~~> ) | 
						
							| 42 | 38 41 | syl |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> seq 1 ( + , ( n e. NN |-> ( R ^ n ) ) ) e. dom ~~> ) | 
						
							| 43 | 24 25 30 33 42 1 | isummulc2 |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> ( A x. sum_ k e. NN ( R ^ k ) ) = sum_ k e. NN ( A x. ( R ^ k ) ) ) | 
						
							| 44 | 20 23 43 | 3eqtr2rd |  |-  ( ( A e. CC /\ R e. CC /\ ( abs ` R ) < 1 ) -> sum_ k e. NN ( A x. ( R ^ k ) ) = ( ( A x. R ) / ( 1 - R ) ) ) |