| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 2 |  | 0zd |  |-  ( ( A e. CC /\ 1 < ( abs ` A ) ) -> 0 e. ZZ ) | 
						
							| 3 |  | oveq2 |  |-  ( n = k -> ( ( 1 / A ) ^ n ) = ( ( 1 / A ) ^ k ) ) | 
						
							| 4 |  | eqid |  |-  ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) = ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) | 
						
							| 5 |  | ovex |  |-  ( ( 1 / A ) ^ k ) e. _V | 
						
							| 6 | 3 4 5 | fvmpt |  |-  ( k e. NN0 -> ( ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ` k ) = ( ( 1 / A ) ^ k ) ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( A e. CC /\ 1 < ( abs ` A ) ) /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ` k ) = ( ( 1 / A ) ^ k ) ) | 
						
							| 8 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 9 |  | 0re |  |-  0 e. RR | 
						
							| 10 |  | 1re |  |-  1 e. RR | 
						
							| 11 | 9 10 | lenlti |  |-  ( 0 <_ 1 <-> -. 1 < 0 ) | 
						
							| 12 | 8 11 | mpbi |  |-  -. 1 < 0 | 
						
							| 13 |  | fveq2 |  |-  ( A = 0 -> ( abs ` A ) = ( abs ` 0 ) ) | 
						
							| 14 |  | abs0 |  |-  ( abs ` 0 ) = 0 | 
						
							| 15 | 13 14 | eqtrdi |  |-  ( A = 0 -> ( abs ` A ) = 0 ) | 
						
							| 16 | 15 | breq2d |  |-  ( A = 0 -> ( 1 < ( abs ` A ) <-> 1 < 0 ) ) | 
						
							| 17 | 12 16 | mtbiri |  |-  ( A = 0 -> -. 1 < ( abs ` A ) ) | 
						
							| 18 | 17 | necon2ai |  |-  ( 1 < ( abs ` A ) -> A =/= 0 ) | 
						
							| 19 |  | reccl |  |-  ( ( A e. CC /\ A =/= 0 ) -> ( 1 / A ) e. CC ) | 
						
							| 20 | 18 19 | sylan2 |  |-  ( ( A e. CC /\ 1 < ( abs ` A ) ) -> ( 1 / A ) e. CC ) | 
						
							| 21 |  | expcl |  |-  ( ( ( 1 / A ) e. CC /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) e. CC ) | 
						
							| 22 | 20 21 | sylan |  |-  ( ( ( A e. CC /\ 1 < ( abs ` A ) ) /\ k e. NN0 ) -> ( ( 1 / A ) ^ k ) e. CC ) | 
						
							| 23 |  | simpl |  |-  ( ( A e. CC /\ 1 < ( abs ` A ) ) -> A e. CC ) | 
						
							| 24 |  | simpr |  |-  ( ( A e. CC /\ 1 < ( abs ` A ) ) -> 1 < ( abs ` A ) ) | 
						
							| 25 | 23 24 7 | georeclim |  |-  ( ( A e. CC /\ 1 < ( abs ` A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( ( 1 / A ) ^ n ) ) ) ~~> ( A / ( A - 1 ) ) ) | 
						
							| 26 | 1 2 7 22 25 | isumclim |  |-  ( ( A e. CC /\ 1 < ( abs ` A ) ) -> sum_ k e. NN0 ( ( 1 / A ) ^ k ) = ( A / ( A - 1 ) ) ) |