Step |
Hyp |
Ref |
Expression |
1 |
|
geolim.1 |
|- ( ph -> A e. CC ) |
2 |
|
geolim.2 |
|- ( ph -> ( abs ` A ) < 1 ) |
3 |
|
geolim.3 |
|- ( ( ph /\ k e. NN0 ) -> ( F ` k ) = ( A ^ k ) ) |
4 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
5 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
6 |
1 2
|
expcnv |
|- ( ph -> ( n e. NN0 |-> ( A ^ n ) ) ~~> 0 ) |
7 |
|
ax-1cn |
|- 1 e. CC |
8 |
|
subcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
9 |
7 1 8
|
sylancr |
|- ( ph -> ( 1 - A ) e. CC ) |
10 |
|
1re |
|- 1 e. RR |
11 |
10
|
ltnri |
|- -. 1 < 1 |
12 |
|
fveq2 |
|- ( A = 1 -> ( abs ` A ) = ( abs ` 1 ) ) |
13 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
14 |
12 13
|
eqtrdi |
|- ( A = 1 -> ( abs ` A ) = 1 ) |
15 |
14
|
breq1d |
|- ( A = 1 -> ( ( abs ` A ) < 1 <-> 1 < 1 ) ) |
16 |
11 15
|
mtbiri |
|- ( A = 1 -> -. ( abs ` A ) < 1 ) |
17 |
16
|
necon2ai |
|- ( ( abs ` A ) < 1 -> A =/= 1 ) |
18 |
2 17
|
syl |
|- ( ph -> A =/= 1 ) |
19 |
18
|
necomd |
|- ( ph -> 1 =/= A ) |
20 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
21 |
7 1 20
|
sylancr |
|- ( ph -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
22 |
21
|
necon3bid |
|- ( ph -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
23 |
19 22
|
mpbird |
|- ( ph -> ( 1 - A ) =/= 0 ) |
24 |
1 9 23
|
divcld |
|- ( ph -> ( A / ( 1 - A ) ) e. CC ) |
25 |
|
nn0ex |
|- NN0 e. _V |
26 |
25
|
mptex |
|- ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) e. _V |
27 |
26
|
a1i |
|- ( ph -> ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) e. _V ) |
28 |
|
oveq2 |
|- ( n = j -> ( A ^ n ) = ( A ^ j ) ) |
29 |
|
eqid |
|- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
30 |
|
ovex |
|- ( A ^ j ) e. _V |
31 |
28 29 30
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
32 |
31
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
33 |
|
expcl |
|- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
34 |
1 33
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
35 |
32 34
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) e. CC ) |
36 |
|
expp1 |
|- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ ( j + 1 ) ) = ( ( A ^ j ) x. A ) ) |
37 |
1 36
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( A ^ ( j + 1 ) ) = ( ( A ^ j ) x. A ) ) |
38 |
1
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> A e. CC ) |
39 |
34 38
|
mulcomd |
|- ( ( ph /\ j e. NN0 ) -> ( ( A ^ j ) x. A ) = ( A x. ( A ^ j ) ) ) |
40 |
37 39
|
eqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( A ^ ( j + 1 ) ) = ( A x. ( A ^ j ) ) ) |
41 |
40
|
oveq1d |
|- ( ( ph /\ j e. NN0 ) -> ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) = ( ( A x. ( A ^ j ) ) / ( 1 - A ) ) ) |
42 |
9
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( 1 - A ) e. CC ) |
43 |
23
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> ( 1 - A ) =/= 0 ) |
44 |
38 34 42 43
|
div23d |
|- ( ( ph /\ j e. NN0 ) -> ( ( A x. ( A ^ j ) ) / ( 1 - A ) ) = ( ( A / ( 1 - A ) ) x. ( A ^ j ) ) ) |
45 |
41 44
|
eqtrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) = ( ( A / ( 1 - A ) ) x. ( A ^ j ) ) ) |
46 |
|
oveq1 |
|- ( n = j -> ( n + 1 ) = ( j + 1 ) ) |
47 |
46
|
oveq2d |
|- ( n = j -> ( A ^ ( n + 1 ) ) = ( A ^ ( j + 1 ) ) ) |
48 |
47
|
oveq1d |
|- ( n = j -> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) = ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) |
49 |
|
eqid |
|- ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) = ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) |
50 |
|
ovex |
|- ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) e. _V |
51 |
48 49 50
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) = ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) |
52 |
51
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) = ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) |
53 |
32
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( A / ( 1 - A ) ) x. ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) ) = ( ( A / ( 1 - A ) ) x. ( A ^ j ) ) ) |
54 |
45 52 53
|
3eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) = ( ( A / ( 1 - A ) ) x. ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) ) ) |
55 |
4 5 6 24 27 35 54
|
climmulc2 |
|- ( ph -> ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ~~> ( ( A / ( 1 - A ) ) x. 0 ) ) |
56 |
24
|
mul01d |
|- ( ph -> ( ( A / ( 1 - A ) ) x. 0 ) = 0 ) |
57 |
55 56
|
breqtrd |
|- ( ph -> ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ~~> 0 ) |
58 |
9 23
|
reccld |
|- ( ph -> ( 1 / ( 1 - A ) ) e. CC ) |
59 |
|
seqex |
|- seq 0 ( + , F ) e. _V |
60 |
59
|
a1i |
|- ( ph -> seq 0 ( + , F ) e. _V ) |
61 |
|
peano2nn0 |
|- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
62 |
|
expcl |
|- ( ( A e. CC /\ ( j + 1 ) e. NN0 ) -> ( A ^ ( j + 1 ) ) e. CC ) |
63 |
1 61 62
|
syl2an |
|- ( ( ph /\ j e. NN0 ) -> ( A ^ ( j + 1 ) ) e. CC ) |
64 |
63 42 43
|
divcld |
|- ( ( ph /\ j e. NN0 ) -> ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) e. CC ) |
65 |
52 64
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) e. CC ) |
66 |
|
nn0cn |
|- ( j e. NN0 -> j e. CC ) |
67 |
66
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> j e. CC ) |
68 |
|
pncan |
|- ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
69 |
67 7 68
|
sylancl |
|- ( ( ph /\ j e. NN0 ) -> ( ( j + 1 ) - 1 ) = j ) |
70 |
69
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( 0 ... ( ( j + 1 ) - 1 ) ) = ( 0 ... j ) ) |
71 |
70
|
sumeq1d |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 0 ... ( ( j + 1 ) - 1 ) ) ( A ^ k ) = sum_ k e. ( 0 ... j ) ( A ^ k ) ) |
72 |
7
|
a1i |
|- ( ( ph /\ j e. NN0 ) -> 1 e. CC ) |
73 |
72 63 42 43
|
divsubdird |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 - ( A ^ ( j + 1 ) ) ) / ( 1 - A ) ) = ( ( 1 / ( 1 - A ) ) - ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) ) |
74 |
18
|
adantr |
|- ( ( ph /\ j e. NN0 ) -> A =/= 1 ) |
75 |
61
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( j + 1 ) e. NN0 ) |
76 |
38 74 75
|
geoser |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 0 ... ( ( j + 1 ) - 1 ) ) ( A ^ k ) = ( ( 1 - ( A ^ ( j + 1 ) ) ) / ( 1 - A ) ) ) |
77 |
52
|
oveq2d |
|- ( ( ph /\ j e. NN0 ) -> ( ( 1 / ( 1 - A ) ) - ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) ) = ( ( 1 / ( 1 - A ) ) - ( ( A ^ ( j + 1 ) ) / ( 1 - A ) ) ) ) |
78 |
73 76 77
|
3eqtr4d |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 0 ... ( ( j + 1 ) - 1 ) ) ( A ^ k ) = ( ( 1 / ( 1 - A ) ) - ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) ) ) |
79 |
|
simpll |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ph ) |
80 |
|
elfznn0 |
|- ( k e. ( 0 ... j ) -> k e. NN0 ) |
81 |
80
|
adantl |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> k e. NN0 ) |
82 |
79 81 3
|
syl2anc |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( F ` k ) = ( A ^ k ) ) |
83 |
|
simpr |
|- ( ( ph /\ j e. NN0 ) -> j e. NN0 ) |
84 |
83 4
|
eleqtrdi |
|- ( ( ph /\ j e. NN0 ) -> j e. ( ZZ>= ` 0 ) ) |
85 |
79 1
|
syl |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> A e. CC ) |
86 |
85 81
|
expcld |
|- ( ( ( ph /\ j e. NN0 ) /\ k e. ( 0 ... j ) ) -> ( A ^ k ) e. CC ) |
87 |
82 84 86
|
fsumser |
|- ( ( ph /\ j e. NN0 ) -> sum_ k e. ( 0 ... j ) ( A ^ k ) = ( seq 0 ( + , F ) ` j ) ) |
88 |
71 78 87
|
3eqtr3rd |
|- ( ( ph /\ j e. NN0 ) -> ( seq 0 ( + , F ) ` j ) = ( ( 1 / ( 1 - A ) ) - ( ( n e. NN0 |-> ( ( A ^ ( n + 1 ) ) / ( 1 - A ) ) ) ` j ) ) ) |
89 |
4 5 57 58 60 65 88
|
climsubc2 |
|- ( ph -> seq 0 ( + , F ) ~~> ( ( 1 / ( 1 - A ) ) - 0 ) ) |
90 |
58
|
subid1d |
|- ( ph -> ( ( 1 / ( 1 - A ) ) - 0 ) = ( 1 / ( 1 - A ) ) ) |
91 |
89 90
|
breqtrd |
|- ( ph -> seq 0 ( + , F ) ~~> ( 1 / ( 1 - A ) ) ) |