| Step |
Hyp |
Ref |
Expression |
| 1 |
|
geolim.1 |
|- ( ph -> A e. CC ) |
| 2 |
|
geolim.2 |
|- ( ph -> ( abs ` A ) < 1 ) |
| 3 |
|
geolim2.3 |
|- ( ph -> M e. NN0 ) |
| 4 |
|
geolim2.4 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( A ^ k ) ) |
| 5 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
| 6 |
3
|
nn0zd |
|- ( ph -> M e. ZZ ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> A e. CC ) |
| 8 |
|
eluznn0 |
|- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 9 |
3 8
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
| 10 |
7 9
|
expcld |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A ^ k ) e. CC ) |
| 11 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
| 12 |
|
eqid |
|- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
| 13 |
|
ovex |
|- ( A ^ k ) e. _V |
| 14 |
11 12 13
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 15 |
9 14
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 16 |
15 4
|
eqtr4d |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( F ` k ) ) |
| 17 |
6 16
|
seqfeq |
|- ( ph -> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) = seq M ( + , F ) ) |
| 18 |
|
oveq2 |
|- ( n = j -> ( A ^ n ) = ( A ^ j ) ) |
| 19 |
|
ovex |
|- ( A ^ j ) e. _V |
| 20 |
18 12 19
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
| 22 |
1 2 21
|
geolim |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) |
| 23 |
|
seqex |
|- seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. _V |
| 24 |
|
ovex |
|- ( 1 / ( 1 - A ) ) e. _V |
| 25 |
23 24
|
breldm |
|- ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 26 |
22 25
|
syl |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 27 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 28 |
|
expcl |
|- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
| 29 |
1 28
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
| 30 |
21 29
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) e. CC ) |
| 31 |
27 3 30
|
iserex |
|- ( ph -> ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> <-> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) ) |
| 32 |
26 31
|
mpbid |
|- ( ph -> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
| 33 |
17 32
|
eqeltrrd |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
| 34 |
5 6 4 10 33
|
isumclim2 |
|- ( ph -> seq M ( + , F ) ~~> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) |
| 35 |
14
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
| 36 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 37 |
1 36
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
| 38 |
27 5 3 35 37 26
|
isumsplit |
|- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
| 39 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 40 |
27 39 35 37 22
|
isumclim |
|- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |
| 41 |
38 40
|
eqtr3d |
|- ( ph -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) = ( 1 / ( 1 - A ) ) ) |
| 42 |
|
1re |
|- 1 e. RR |
| 43 |
42
|
ltnri |
|- -. 1 < 1 |
| 44 |
|
fveq2 |
|- ( A = 1 -> ( abs ` A ) = ( abs ` 1 ) ) |
| 45 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
| 46 |
44 45
|
eqtrdi |
|- ( A = 1 -> ( abs ` A ) = 1 ) |
| 47 |
46
|
breq1d |
|- ( A = 1 -> ( ( abs ` A ) < 1 <-> 1 < 1 ) ) |
| 48 |
43 47
|
mtbiri |
|- ( A = 1 -> -. ( abs ` A ) < 1 ) |
| 49 |
48
|
necon2ai |
|- ( ( abs ` A ) < 1 -> A =/= 1 ) |
| 50 |
2 49
|
syl |
|- ( ph -> A =/= 1 ) |
| 51 |
1 50 3
|
geoser |
|- ( ph -> sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) = ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) |
| 52 |
51
|
oveq1d |
|- ( ph -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) = ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
| 53 |
41 52
|
eqtr3d |
|- ( ph -> ( 1 / ( 1 - A ) ) = ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
| 54 |
53
|
oveq1d |
|- ( ph -> ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = ( ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) ) |
| 55 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
| 56 |
|
ax-1cn |
|- 1 e. CC |
| 57 |
1 3
|
expcld |
|- ( ph -> ( A ^ M ) e. CC ) |
| 58 |
|
subcl |
|- ( ( 1 e. CC /\ ( A ^ M ) e. CC ) -> ( 1 - ( A ^ M ) ) e. CC ) |
| 59 |
56 57 58
|
sylancr |
|- ( ph -> ( 1 - ( A ^ M ) ) e. CC ) |
| 60 |
|
subcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
| 61 |
56 1 60
|
sylancr |
|- ( ph -> ( 1 - A ) e. CC ) |
| 62 |
50
|
necomd |
|- ( ph -> 1 =/= A ) |
| 63 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 64 |
56 1 63
|
sylancr |
|- ( ph -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
| 65 |
64
|
necon3bid |
|- ( ph -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
| 66 |
62 65
|
mpbird |
|- ( ph -> ( 1 - A ) =/= 0 ) |
| 67 |
55 59 61 66
|
divsubdird |
|- ( ph -> ( ( 1 - ( 1 - ( A ^ M ) ) ) / ( 1 - A ) ) = ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) ) |
| 68 |
|
nncan |
|- ( ( 1 e. CC /\ ( A ^ M ) e. CC ) -> ( 1 - ( 1 - ( A ^ M ) ) ) = ( A ^ M ) ) |
| 69 |
56 57 68
|
sylancr |
|- ( ph -> ( 1 - ( 1 - ( A ^ M ) ) ) = ( A ^ M ) ) |
| 70 |
69
|
oveq1d |
|- ( ph -> ( ( 1 - ( 1 - ( A ^ M ) ) ) / ( 1 - A ) ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
| 71 |
67 70
|
eqtr3d |
|- ( ph -> ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
| 72 |
59 61 66
|
divcld |
|- ( ph -> ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) e. CC ) |
| 73 |
5 6 15 10 32
|
isumcl |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) e. CC ) |
| 74 |
72 73
|
pncan2d |
|- ( ph -> ( ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) |
| 75 |
54 71 74
|
3eqtr3rd |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
| 76 |
34 75
|
breqtrd |
|- ( ph -> seq M ( + , F ) ~~> ( ( A ^ M ) / ( 1 - A ) ) ) |