Step |
Hyp |
Ref |
Expression |
1 |
|
geolim.1 |
|- ( ph -> A e. CC ) |
2 |
|
geolim.2 |
|- ( ph -> ( abs ` A ) < 1 ) |
3 |
|
geolim2.3 |
|- ( ph -> M e. NN0 ) |
4 |
|
geolim2.4 |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( F ` k ) = ( A ^ k ) ) |
5 |
|
eqid |
|- ( ZZ>= ` M ) = ( ZZ>= ` M ) |
6 |
3
|
nn0zd |
|- ( ph -> M e. ZZ ) |
7 |
1
|
adantr |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> A e. CC ) |
8 |
|
eluznn0 |
|- ( ( M e. NN0 /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
9 |
3 8
|
sylan |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> k e. NN0 ) |
10 |
7 9
|
expcld |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( A ^ k ) e. CC ) |
11 |
|
oveq2 |
|- ( n = k -> ( A ^ n ) = ( A ^ k ) ) |
12 |
|
eqid |
|- ( n e. NN0 |-> ( A ^ n ) ) = ( n e. NN0 |-> ( A ^ n ) ) |
13 |
|
ovex |
|- ( A ^ k ) e. _V |
14 |
11 12 13
|
fvmpt |
|- ( k e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
15 |
9 14
|
syl |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
16 |
15 4
|
eqtr4d |
|- ( ( ph /\ k e. ( ZZ>= ` M ) ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( F ` k ) ) |
17 |
6 16
|
seqfeq |
|- ( ph -> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) = seq M ( + , F ) ) |
18 |
|
oveq2 |
|- ( n = j -> ( A ^ n ) = ( A ^ j ) ) |
19 |
|
ovex |
|- ( A ^ j ) e. _V |
20 |
18 12 19
|
fvmpt |
|- ( j e. NN0 -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
21 |
20
|
adantl |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) = ( A ^ j ) ) |
22 |
1 2 21
|
geolim |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) ) |
23 |
|
seqex |
|- seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. _V |
24 |
|
ovex |
|- ( 1 / ( 1 - A ) ) e. _V |
25 |
23 24
|
breldm |
|- ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) ~~> ( 1 / ( 1 - A ) ) -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
26 |
22 25
|
syl |
|- ( ph -> seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
27 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
28 |
|
expcl |
|- ( ( A e. CC /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
29 |
1 28
|
sylan |
|- ( ( ph /\ j e. NN0 ) -> ( A ^ j ) e. CC ) |
30 |
21 29
|
eqeltrd |
|- ( ( ph /\ j e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` j ) e. CC ) |
31 |
27 3 30
|
iserex |
|- ( ph -> ( seq 0 ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> <-> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) ) |
32 |
26 31
|
mpbid |
|- ( ph -> seq M ( + , ( n e. NN0 |-> ( A ^ n ) ) ) e. dom ~~> ) |
33 |
17 32
|
eqeltrrd |
|- ( ph -> seq M ( + , F ) e. dom ~~> ) |
34 |
5 6 4 10 33
|
isumclim2 |
|- ( ph -> seq M ( + , F ) ~~> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) |
35 |
14
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> ( ( n e. NN0 |-> ( A ^ n ) ) ` k ) = ( A ^ k ) ) |
36 |
|
expcl |
|- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
37 |
1 36
|
sylan |
|- ( ( ph /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
38 |
27 5 3 35 37 26
|
isumsplit |
|- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
39 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
40 |
27 39 35 37 22
|
isumclim |
|- ( ph -> sum_ k e. NN0 ( A ^ k ) = ( 1 / ( 1 - A ) ) ) |
41 |
38 40
|
eqtr3d |
|- ( ph -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) = ( 1 / ( 1 - A ) ) ) |
42 |
|
1re |
|- 1 e. RR |
43 |
42
|
ltnri |
|- -. 1 < 1 |
44 |
|
fveq2 |
|- ( A = 1 -> ( abs ` A ) = ( abs ` 1 ) ) |
45 |
|
abs1 |
|- ( abs ` 1 ) = 1 |
46 |
44 45
|
eqtrdi |
|- ( A = 1 -> ( abs ` A ) = 1 ) |
47 |
46
|
breq1d |
|- ( A = 1 -> ( ( abs ` A ) < 1 <-> 1 < 1 ) ) |
48 |
43 47
|
mtbiri |
|- ( A = 1 -> -. ( abs ` A ) < 1 ) |
49 |
48
|
necon2ai |
|- ( ( abs ` A ) < 1 -> A =/= 1 ) |
50 |
2 49
|
syl |
|- ( ph -> A =/= 1 ) |
51 |
1 50 3
|
geoser |
|- ( ph -> sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) = ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) |
52 |
51
|
oveq1d |
|- ( ph -> ( sum_ k e. ( 0 ... ( M - 1 ) ) ( A ^ k ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) = ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
53 |
41 52
|
eqtr3d |
|- ( ph -> ( 1 / ( 1 - A ) ) = ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) ) |
54 |
53
|
oveq1d |
|- ( ph -> ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = ( ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) ) |
55 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
56 |
|
ax-1cn |
|- 1 e. CC |
57 |
1 3
|
expcld |
|- ( ph -> ( A ^ M ) e. CC ) |
58 |
|
subcl |
|- ( ( 1 e. CC /\ ( A ^ M ) e. CC ) -> ( 1 - ( A ^ M ) ) e. CC ) |
59 |
56 57 58
|
sylancr |
|- ( ph -> ( 1 - ( A ^ M ) ) e. CC ) |
60 |
|
subcl |
|- ( ( 1 e. CC /\ A e. CC ) -> ( 1 - A ) e. CC ) |
61 |
56 1 60
|
sylancr |
|- ( ph -> ( 1 - A ) e. CC ) |
62 |
50
|
necomd |
|- ( ph -> 1 =/= A ) |
63 |
|
subeq0 |
|- ( ( 1 e. CC /\ A e. CC ) -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
64 |
56 1 63
|
sylancr |
|- ( ph -> ( ( 1 - A ) = 0 <-> 1 = A ) ) |
65 |
64
|
necon3bid |
|- ( ph -> ( ( 1 - A ) =/= 0 <-> 1 =/= A ) ) |
66 |
62 65
|
mpbird |
|- ( ph -> ( 1 - A ) =/= 0 ) |
67 |
55 59 61 66
|
divsubdird |
|- ( ph -> ( ( 1 - ( 1 - ( A ^ M ) ) ) / ( 1 - A ) ) = ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) ) |
68 |
|
nncan |
|- ( ( 1 e. CC /\ ( A ^ M ) e. CC ) -> ( 1 - ( 1 - ( A ^ M ) ) ) = ( A ^ M ) ) |
69 |
56 57 68
|
sylancr |
|- ( ph -> ( 1 - ( 1 - ( A ^ M ) ) ) = ( A ^ M ) ) |
70 |
69
|
oveq1d |
|- ( ph -> ( ( 1 - ( 1 - ( A ^ M ) ) ) / ( 1 - A ) ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
71 |
67 70
|
eqtr3d |
|- ( ph -> ( ( 1 / ( 1 - A ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
72 |
59 61 66
|
divcld |
|- ( ph -> ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) e. CC ) |
73 |
5 6 15 10 32
|
isumcl |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) e. CC ) |
74 |
72 73
|
pncan2d |
|- ( ph -> ( ( ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) + sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) - ( ( 1 - ( A ^ M ) ) / ( 1 - A ) ) ) = sum_ k e. ( ZZ>= ` M ) ( A ^ k ) ) |
75 |
54 71 74
|
3eqtr3rd |
|- ( ph -> sum_ k e. ( ZZ>= ` M ) ( A ^ k ) = ( ( A ^ M ) / ( 1 - A ) ) ) |
76 |
34 75
|
breqtrd |
|- ( ph -> seq M ( + , F ) ~~> ( ( A ^ M ) / ( 1 - A ) ) ) |