| Step | Hyp | Ref | Expression | 
						
							| 1 |  | geolim3.a |  |-  ( ph -> A e. ZZ ) | 
						
							| 2 |  | geolim3.b1 |  |-  ( ph -> B e. CC ) | 
						
							| 3 |  | geolim3.b2 |  |-  ( ph -> ( abs ` B ) < 1 ) | 
						
							| 4 |  | geolim3.c |  |-  ( ph -> C e. CC ) | 
						
							| 5 |  | geolim3.f |  |-  F = ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) | 
						
							| 6 |  | seqeq3 |  |-  ( F = ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) -> seq A ( + , F ) = seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) ) | 
						
							| 7 | 5 6 | ax-mp |  |-  seq A ( + , F ) = seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) | 
						
							| 8 |  | nn0uz |  |-  NN0 = ( ZZ>= ` 0 ) | 
						
							| 9 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 10 |  | oveq2 |  |-  ( k = a -> ( B ^ k ) = ( B ^ a ) ) | 
						
							| 11 |  | eqid |  |-  ( k e. NN0 |-> ( B ^ k ) ) = ( k e. NN0 |-> ( B ^ k ) ) | 
						
							| 12 |  | ovex |  |-  ( B ^ a ) e. _V | 
						
							| 13 | 10 11 12 | fvmpt |  |-  ( a e. NN0 -> ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) = ( B ^ a ) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ a e. NN0 ) -> ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) = ( B ^ a ) ) | 
						
							| 15 | 2 3 14 | geolim |  |-  ( ph -> seq 0 ( + , ( k e. NN0 |-> ( B ^ k ) ) ) ~~> ( 1 / ( 1 - B ) ) ) | 
						
							| 16 |  | expcl |  |-  ( ( B e. CC /\ a e. NN0 ) -> ( B ^ a ) e. CC ) | 
						
							| 17 | 2 16 | sylan |  |-  ( ( ph /\ a e. NN0 ) -> ( B ^ a ) e. CC ) | 
						
							| 18 | 14 17 | eqeltrd |  |-  ( ( ph /\ a e. NN0 ) -> ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) e. CC ) | 
						
							| 19 | 1 | zcnd |  |-  ( ph -> A e. CC ) | 
						
							| 20 |  | nn0cn |  |-  ( a e. NN0 -> a e. CC ) | 
						
							| 21 |  | fvex |  |-  ( ZZ>= ` A ) e. _V | 
						
							| 22 | 21 | mptex |  |-  ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) e. _V | 
						
							| 23 | 22 | shftval4 |  |-  ( ( A e. CC /\ a e. CC ) -> ( ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ` a ) = ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ` ( A + a ) ) ) | 
						
							| 24 | 19 20 23 | syl2an |  |-  ( ( ph /\ a e. NN0 ) -> ( ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ` a ) = ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ` ( A + a ) ) ) | 
						
							| 25 |  | uzid |  |-  ( A e. ZZ -> A e. ( ZZ>= ` A ) ) | 
						
							| 26 | 1 25 | syl |  |-  ( ph -> A e. ( ZZ>= ` A ) ) | 
						
							| 27 |  | uzaddcl |  |-  ( ( A e. ( ZZ>= ` A ) /\ a e. NN0 ) -> ( A + a ) e. ( ZZ>= ` A ) ) | 
						
							| 28 | 26 27 | sylan |  |-  ( ( ph /\ a e. NN0 ) -> ( A + a ) e. ( ZZ>= ` A ) ) | 
						
							| 29 |  | oveq1 |  |-  ( k = ( A + a ) -> ( k - A ) = ( ( A + a ) - A ) ) | 
						
							| 30 | 29 | oveq2d |  |-  ( k = ( A + a ) -> ( B ^ ( k - A ) ) = ( B ^ ( ( A + a ) - A ) ) ) | 
						
							| 31 | 30 | oveq2d |  |-  ( k = ( A + a ) -> ( C x. ( B ^ ( k - A ) ) ) = ( C x. ( B ^ ( ( A + a ) - A ) ) ) ) | 
						
							| 32 |  | eqid |  |-  ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) = ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) | 
						
							| 33 |  | ovex |  |-  ( C x. ( B ^ ( ( A + a ) - A ) ) ) e. _V | 
						
							| 34 | 31 32 33 | fvmpt |  |-  ( ( A + a ) e. ( ZZ>= ` A ) -> ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ` ( A + a ) ) = ( C x. ( B ^ ( ( A + a ) - A ) ) ) ) | 
						
							| 35 | 28 34 | syl |  |-  ( ( ph /\ a e. NN0 ) -> ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ` ( A + a ) ) = ( C x. ( B ^ ( ( A + a ) - A ) ) ) ) | 
						
							| 36 |  | pncan2 |  |-  ( ( A e. CC /\ a e. CC ) -> ( ( A + a ) - A ) = a ) | 
						
							| 37 | 19 20 36 | syl2an |  |-  ( ( ph /\ a e. NN0 ) -> ( ( A + a ) - A ) = a ) | 
						
							| 38 | 37 | oveq2d |  |-  ( ( ph /\ a e. NN0 ) -> ( B ^ ( ( A + a ) - A ) ) = ( B ^ a ) ) | 
						
							| 39 | 38 14 | eqtr4d |  |-  ( ( ph /\ a e. NN0 ) -> ( B ^ ( ( A + a ) - A ) ) = ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) ) | 
						
							| 40 | 39 | oveq2d |  |-  ( ( ph /\ a e. NN0 ) -> ( C x. ( B ^ ( ( A + a ) - A ) ) ) = ( C x. ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) ) ) | 
						
							| 41 | 24 35 40 | 3eqtrd |  |-  ( ( ph /\ a e. NN0 ) -> ( ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ` a ) = ( C x. ( ( k e. NN0 |-> ( B ^ k ) ) ` a ) ) ) | 
						
							| 42 | 8 9 4 15 18 41 | isermulc2 |  |-  ( ph -> seq 0 ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ~~> ( C x. ( 1 / ( 1 - B ) ) ) ) | 
						
							| 43 | 19 | negidd |  |-  ( ph -> ( A + -u A ) = 0 ) | 
						
							| 44 | 43 | seqeq1d |  |-  ( ph -> seq ( A + -u A ) ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) = seq 0 ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ) | 
						
							| 45 |  | ax-1cn |  |-  1 e. CC | 
						
							| 46 |  | subcl |  |-  ( ( 1 e. CC /\ B e. CC ) -> ( 1 - B ) e. CC ) | 
						
							| 47 | 45 2 46 | sylancr |  |-  ( ph -> ( 1 - B ) e. CC ) | 
						
							| 48 |  | abs1 |  |-  ( abs ` 1 ) = 1 | 
						
							| 49 | 48 | a1i |  |-  ( ph -> ( abs ` 1 ) = 1 ) | 
						
							| 50 | 2 | abscld |  |-  ( ph -> ( abs ` B ) e. RR ) | 
						
							| 51 | 50 3 | gtned |  |-  ( ph -> 1 =/= ( abs ` B ) ) | 
						
							| 52 | 49 51 | eqnetrd |  |-  ( ph -> ( abs ` 1 ) =/= ( abs ` B ) ) | 
						
							| 53 |  | fveq2 |  |-  ( 1 = B -> ( abs ` 1 ) = ( abs ` B ) ) | 
						
							| 54 | 53 | necon3i |  |-  ( ( abs ` 1 ) =/= ( abs ` B ) -> 1 =/= B ) | 
						
							| 55 | 52 54 | syl |  |-  ( ph -> 1 =/= B ) | 
						
							| 56 |  | subeq0 |  |-  ( ( 1 e. CC /\ B e. CC ) -> ( ( 1 - B ) = 0 <-> 1 = B ) ) | 
						
							| 57 | 45 2 56 | sylancr |  |-  ( ph -> ( ( 1 - B ) = 0 <-> 1 = B ) ) | 
						
							| 58 | 57 | necon3bid |  |-  ( ph -> ( ( 1 - B ) =/= 0 <-> 1 =/= B ) ) | 
						
							| 59 | 55 58 | mpbird |  |-  ( ph -> ( 1 - B ) =/= 0 ) | 
						
							| 60 | 4 47 59 | divrecd |  |-  ( ph -> ( C / ( 1 - B ) ) = ( C x. ( 1 / ( 1 - B ) ) ) ) | 
						
							| 61 | 42 44 60 | 3brtr4d |  |-  ( ph -> seq ( A + -u A ) ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ~~> ( C / ( 1 - B ) ) ) | 
						
							| 62 | 1 | znegcld |  |-  ( ph -> -u A e. ZZ ) | 
						
							| 63 | 22 | isershft |  |-  ( ( A e. ZZ /\ -u A e. ZZ ) -> ( seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) ~~> ( C / ( 1 - B ) ) <-> seq ( A + -u A ) ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ~~> ( C / ( 1 - B ) ) ) ) | 
						
							| 64 | 1 62 63 | syl2anc |  |-  ( ph -> ( seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) ~~> ( C / ( 1 - B ) ) <-> seq ( A + -u A ) ( + , ( ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) shift -u A ) ) ~~> ( C / ( 1 - B ) ) ) ) | 
						
							| 65 | 61 64 | mpbird |  |-  ( ph -> seq A ( + , ( k e. ( ZZ>= ` A ) |-> ( C x. ( B ^ ( k - A ) ) ) ) ) ~~> ( C / ( 1 - B ) ) ) | 
						
							| 66 | 7 65 | eqbrtrid |  |-  ( ph -> seq A ( + , F ) ~~> ( C / ( 1 - B ) ) ) |